当前位置: 首页 » 中小学课程 » 普高总复习 » 高中化学总复习资料大全

高中化学总复习资料大全

高中化学知识点规律大全

——祝天下学子都能学有所成

化学反应及其能量变化

1 .氧化还原反应

[ 氧化还原反应 ] 有电子转移 ( 包括电子的得失和共用电子对的偏移 ) 或有元素化

合价升降的反应.如 2Na+ C12 = 2NaCl( 有电子得失 ) 、 H2+ C12 = 2HCl( 有电子

对偏移 ) 等反应均属氧化还原反应。

氧化还原反应的本质是电子转移 ( 电子得失或电子对偏移 ) 。

[ 氧化还原反应的特征 ] 在反应前后有元素的化合价发生变化.根据氧化还原反应

的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价

发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。

[ 氧化剂与还原剂 ]

概 念 含 义 概 念 含 义

氧化剂 反应后所含元素化合价降低的反应物 还原剂 反应后所含元素化合价升高

的反应物

被氧化 还原剂在反应时化合价升高的过程 被还原 氧化剂在反应时化合价降低的

过程

氧化性 氧化剂具有的夺电子的能力 还原性 还原剂具有的失电子的能力

氧化反应 元素在反应过程中化合价升高的反应 还原反应 元素在反 应过程中化

合价降低的反应

氧化产物 还原剂在反应时化合价升高后得到的产物 还原产物 氧化剂在反应时化

合价降低后得到的产物

氧化剂与还原剂的相互关系

重要的氧化剂和还原剂:(1) 所含元素的化合价处在最高价的物质只能得到电子,只具有氧化性,只能作氧

化剂 ( 注:不一定是强氧化剂 ) 。重要的氧化剂有:

①活泼非金属单质,如 X2( 卤素单质 ) 、 O2 、 O3 等。②所含元素处于高价或较

高价时的氧化物,如 MnO2 、 NO2 、 PbO2 等。③所含元素处于高价时的含氧酸,

如浓 H2SO4 、 HNO3 等.④所含元素处于高价时的盐,如 KMnO4 、 KClO3 、

K2Cr2O7 等.⑤金属阳离子等,如 Fe3 +、 Cu2 +、 Ag +、 H +等.⑥过氧化

物,如 Na2O2 、 H2O2 等.⑦特殊物质,如 HClO 也具有强氧化性.

(2) 所含元素的化合价处在最低价的物质只能失去电子,只具有还原性,只能作还

原剂 ( 注:不一定是强还原剂 ) .重要的还原剂有:

①活泼金属单质,如 Na 、 K 、 Ca 、 Mg 、 Al 、 Fe 等.②某些非金属单质,如

C 、 H2 、 Si 等.③所含元素处于低价或较低价时的氧化物,如 CO 、 SO2 等.④

所含元素处于低价或较低价时的化合物,如含有、、、、的化合物 H2S 、 Na2S 、

H2SO3 、 Na2SO3 、 HI 、 HBr 、 FeSO4 、 NH3 等.

(3) 当所含元素处于中间价态时的物质,既有氧化性又有还原性,如 H2O2 、 SO2 、

Fe2 +等.

(4) 当一种物质中既含有高价态元素又含有低价态元素时,该物质既有氧化性又有

还原性.例如,盐酸 (HCl) 与 Zn 反应时作氧化剂,而浓盐酸与 MnO2 共热反应时,

则作还原剂.

[ 氧化还原反应的分类 ]

(1) 不同反应物间的氧化还原反应.

①不同元素间的氧化还原反应.

例如: MnO2+ 4HCl( 浓 ) MnCl2+ C12 ↑ + 2H2O 绝大多数氧化还原反应属于这一类.

②同种元素间的氧化还原反应.

例如: 2H2S+ SO2 = 3S+ 2H2O KClO3+ 6HCl( 浓 ) = KCl+ 3C12 ↑ + 3H2O

在这类反应中,所得氧化产物和还原产物是同一物质,这类氧化还原反应又叫归中

反应.

(2) 同一反应物的氧化还原反应.

①同一反应物中,不同元素间的氧化还原反应.例如: 2KClO32KCl+ 3O2 ↑

②同一反应物中,同种元素不同价态间的氧化还原反应.例如: NH4NO3N2O ↑ +

2H2O

③同一反应物中,同种元素同一价态间的氧化还原反应.例如:C12+ 2NaOH = NaCl+ NaClO+ H2O 3NO2+ H2O = 2HNO3+ NO

在这类反应中,某一元素的化合价有一部分升高了,另一部分则降低了.这类氧化

还原反应又叫歧化反应.

[ 氧化还原反应与四种基本反应类型的关系 ] 如右图所示.由图可知:置换反应都

是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是

氧化还原反应.

[ 氧化还原反应中电子转移的方向、数目的表示方法 ]

(1) 单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用

带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标

出电子转移的数目.

在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写

“得”、“失”字样.

(2) 双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数

目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反

应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、

“失”电子及数目.例如:

[ 氧化还原反应的有关规律 ]

(1) 氧化性、还原性强弱判断的一般规律.

氧化性、还原性的强弱取决于得失电子的难易;而与得失电子数的多少无关.

①金属活动性顺序表.金属的活动性越强,金属单质 ( 原子 ) 的还原性 也越强,

而其离子的氧化性越弱.如还原性: Mg>Fe>Cu>Ag ;氧化性: Ag + >Cu2

+ >Fe2 + >Mg2 +

②同种元素的不同价态.

特殊情况;氯的含氧酸的氧化性顺序为: HClO>HClO3>HClO4 .

⑧氧化还原反应进行的方向.一般而言,氧化还原反应总是朝着强氧化性物质与

强还原性物质反应生成弱氧化性物质与弱还原性物质的方向进行.在一个给出的氧

化还原反应方程式中,氧化剂和氧化产物都有氧化性,还原剂和还原产物都有还原

性,其氧化性、还原性的强弱关系为:

氧化性:氧化剂>氧化产物; 还原性:还原剂>还原产物

反之,根据给出的物质的氧化性、还原性的强弱,可以判断某氧化还原反应能否自

动进行.④反应条件的难易.不同的氧化剂 ( 还原剂 ) 与同一还原剂 ( 氧化剂 ) 反应时,反

应越易进行,则对应的氧化剂 ( 还原剂 ) 的氧化性 ( 还原性 ) 越强,反之越弱.

⑤浓度.同一种氧化剂 ( 或还原剂 ) ,其浓度越大,氧化性 ( 或还原性 ) 就越强.

⑥ H +浓度.对于在溶液中进行的氧化还原反应,若氧化剂为含氧酸或含氧酸盐,

则溶液中 H +浓度越大,其氧化性就越强.

(2) 氧化还原反应中元素化合价的规律.

①一种元素具有多种价态时,处于最高价态时只具有氧化性,处于最低价态时只

具有还原性,而处于中间价态时则既有氧化性又具有还原性.但须注意,若一种化

合物中同时含最高价态元素和最低价态元素时,则该化合物兼有氧化性和还原性,

如 HCl .

②价态不相交规律.同种元素不同价态间相互反应生成两种价态不同的产物时,

化合价升高与化合价降低的值不相交,即高价态降低后的值一定不低于低价态升高

后的值,也可归纳为“价态变化只靠拢、不相交”.所以,同种元素的相邻价态间不

能发生氧化还原反应;同种元素间隔中间价态,发生归中反应.

(3) 氧化还原反应中的优先规律:当一种氧化剂 ( 还原剂 ) 同时与多种还原剂 ( 氧

化剂 ) 相遇时,该氧化剂 ( 还原剂 ) 首先与还原性 ( 氧化性 ) 最强的物质发生反应,

而只有当还原性 ( 氧化性 ) 最强的物质反应完后,才依次是还原性 ( 氧化性 ) 较弱

的物质发生反应.

(4) 电子守恒规律.在任何氧化还原反应中,氧化剂得到的电子总数等于还原剂失

去的电子总数 ( 即氧化剂化合价升高的总数等于还原剂化合价降低的总数 ) .这一

点也是氧化还原反应配平的基础。

2 .离子反应

[ 离子反应 ] 有离子参加或有离子生成的反应,都称为离子反应.离子反应的本质、

类型和发生的条件:

(1) 离子反应的本质:反应物中某种离子的浓度减小.

(2) 离子反应的主要类型及其发生的条件:

①离子互换 ( 复分解 ) 反应.具备下列条件之一就可以使反应朝着离子浓度减小的

方向进行,即离子反应就会发生.

a .生成难溶于水的物质.如: Cu2 + + 2OH -= Cu(OH)2 ↓

注意:当有关离子浓度足够大时,生成微溶物的离子反应也能发生.如:

2Ag + + SO42 —= Ag2SO4 ↓ Ca2 + + 2OH -= Ca(OH)2 ↓或者由微溶物生成难溶物的反应也能生成.如当石灰乳与 Na2CO3 溶液混合时,发

生反应:

Ca(OH)2 + CO32 —= CaCO3 ↓ + 2OH -

b .生成难电离的物质 ( 即弱电解质 ) .如: H + + OH -= H2O H + + CH3COO

-= CH3COOH

c .生成挥发性物质 ( 即气体 ) .如: CO32 - + 2H += CO2 ↑ + H2O NH4 + + OH

- NH3 ↑ + H2O

②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原

剂,即反应朝着氧化性、还原性减弱的方向进行.例如:

Fe + Cu2 += Fe2 + + Cu Cl2 + 2Br -= 2C1 - + Br2

2MnO4 - + 16H + + 10C1 -= 2Mn2 + + 5C12 ↑ + 8H2O

书写离子方程式时应注意的问题:

(1) 电解质在非电离条件下 ( 不是在水溶液中或熔融状态 ) ,虽然也有离子参加反

应,但不能写成离子方程式,因为此时这些离子并没有发生电离.如 NH4Cl 固体

与 Ca(OH)2 固体混合加热制取氨气的反应、浓 H2SO4 与固体 ( 如 NaCl 、 Cu 等 )

的反应等,都不能写成离子方程式.相反,在某些化学方程式中,虽然其反应物不

是电解质或强电解质,没有大量离子参加反应,但反应后产生了大量离子,因此,

仍可写成离子方程式.如 Na 、 Na2O 、 Na2O2 、 SO3 、 Cl2 等与 H2O 的反应.

(2) 多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子

的形式,而酸根中的 H +与正盐阴离子不能拆开写.例如 NaHS 、 Ca(HCO3)2 等,

只能分别写成 Na +、 HS -和 Ca2 +、 HCO3 -等酸式酸根的形式.

(3) 对于微溶于水的物质,要分为两种情况来处理:

①当作反应物时?,微溶物要保留化学式的形式,不能拆开.

②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若

为浊液或固体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等.

(4) 若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生

不止一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不

同.例如,向 NaOH 溶液中不断通入 CO2 气体至过量,有关反应的离子方程式依

次为: CO2+ 2OH —= CO32 — + H2O ( CO2 适量)

CO2+ OH —= HCO3 —( CO2 足量)

在溶液中离子能否大量共存的判断方法: 几种离子在溶液中能否大量共存,实质上就是看它们之间是否发生反应.若离子

间不发生反应,就能大量共存;否则就不能大量共存.离子间若发生下列反应之一,

就不能大量共存.

(1) 生成难溶物或微溶物.如 Ca2 +与 CO32 -、 SO42 -、 OH -; Ag +与 C1 -、

Br -、 I -、 SO32 -,等等.

(2) 生成气体.如 NH4 +与 OH -; H +与 HCO3 -、 CO32 -、 S2 -、 HS -、

SO32 -、 HSO3 -等.

(3) 生成难电离物质 ( 弱酸、弱碱、水 ) .如 H +与 C1O -、 F -、 CH3COO -生

成弱酸; OH -与 NH4 +、

A13 +、 Fe3 +、 Fe2 +、 Cu2 +等生成弱碱; H +与 OH -生成 H2O .

(4) 发生氧化还原反应.具有氧化性的离子 ( 如 MnO4 -、 ClO -、 Fe3 +等 ) 与

具有还原性的离子 ( 如 S2 -、 I -、 SO32 -、 Fe2 +等 ) 不能共存.应注意的是,

有些离子在碱性或中性溶液中可大量共存,但在酸性条件下则不能大量共存,如

SO32 -与 S2 -, NO3 -与 I -、 S2 -、 SO32 -、 Fe2 +等.

*(5) 形成配合物.如 Fe3 +与 SCN -因反应生成 Fe(SCN)3 而不能大量共存.

*(6) 弱酸根阴离子与弱碱阳离子因易发生双水解反应而不能大量共存,例如 Al3 +

与 HCO3 -、 CO32 -、 A1O2 -等.

说明: 在涉及判断离子在溶液中能否大量共存的问题时,要注意题目中附加的限

定性条件:

①无色透明的溶液中,不能存在有色离子,如 Cu2 + ( 蓝色 ) 、 Fe3 + ( 黄色 ) 、

Fe2 + ( 浅绿色 ) 、 MnO4 - ( 紫色 ) .

②在强酸性溶液中,与 H +起反应的离子不能大量共存.

③在强碱性溶液中,与 OH -起反应的离子不能大量共存.

[ 电解质与非电解质 ]

(1) 电解质:在水溶液里或者熔融状态下能够导电的化合物叫电解质.电解质不一

定能导电,而只有在溶于水或熔融状态时电离出自由移动的离子后才能导电 ( 因此,

电解质导电的原因是存在自由移动的离子 ) .能导电的不一定是电解质,如金属、

石墨等单质.

(2) 非电解质:在水溶液里和熔融状态下都不能导电的化合物.因为非电解质归属

于化合物,故如 C12 等不导电的单质不属于非电解质.

(3) 电解质与非电解质的比较.

电解质 非电解质 区

别 能否导电 溶于水后或熔融状态时能导电 不能导电

能否电离 溶于水或受热熔化时能电离产生自由移动的离子 不能电离,因此没有

自由移动的离子存在

所属物质 酸、碱、盐等 蔗糖、酒精等大部分有机物,气体化合物如 NH3 、

SO2 等

联系 都属于化合物

说明 某些气体化合物的水溶液虽然能导电,但其原因并非该物质本身电离生成了

自由移动的离子,因此这些气体化合物属于非电解质.例如;氨气能溶于水,但

NH3 是非电解质.氨水能导电是因为 NH3 与 H2O 反应生成了能电离出 NH4 +和

OH -的 NH3 · H2O 的缘故,所以 NH3 · H2O 才是电解质.

[ 强电解质与弱电解质 ]

(1) 强电解质:溶于水后全部电离成离子的电解质.

(2) 弱电解质:溶于水后只有一部分分子能电离成离子的电解质.

(3) 强电解质与弱电解质的比较.

强电解质 弱电解质

代表物质 ①强酸:如 H2SO4 、 HNO3 、 HCl 等②强碱:如 KOH 、 NaOH 、

Ba(OH)2 等③盐:绝大多数可溶、难溶性盐,如 NaCl 、 CaCO3 等 ① H2O ②弱

酸:如 CH3COOH 、 HF 、 HClO 、 H2CO3 等③弱碱: NH3 · H2O 、 A1(OH)3 、

Fe(OH)3 等

电离情况 完全电离,不存在电离平衡 ( 电离不可逆 ) .电离方程式用“=”表示.

如: HNO3 = H + + NO3 - 不完全电离 ( 部分电离 ) ,存在电离平衡.电离方程

式用“”表示.

如: CH3COOHCH3COO - + H 十

水溶液中存在的微粒 水合离子 ( 离子 ) 和 H2O 分子 大部分以电解质分子的形式

存在,只有少量电离出来的离子

离子方程式的书写情况 拆开为离子 ( 特殊:难溶性盐仍以化学式表示 ) 全部用化

学式表示

注意 : (1) 在含有阴、阳离子的固态强电解质中,虽然有阴、阳离子存在,但这些

离子不能自由移动,因此不导电.如氯化钠固体不导电.(2) 电解质溶液导电能力的强弱取决于溶液中自由移动离子浓度的大小 ( 注意:不

是取决于自由移动离子数目的多少 ) .溶液中离子浓度大,溶液的导电性就强;反

之,溶液的导电性就弱.因此,强电解质溶液的导电能力不一定比弱电解质溶液的

导电能力强.但在相同条件 ( 相同浓度、相同温度 ) 下,强电解质溶液的导电能力

比弱电解质的导电能力强.

[ 离子方程式 ] 用实际参加反应的离子符号来表示离子反应的式子.所谓实际参加

反应的离子,即是在反应前后数目发生变化的离子.离子方程式不仅表示一定物质

间的某个反应,而且可以表示所有同一类型的离子反应.如: H + + OH -= H2O

可以表示强酸与强碱反应生成可溶性盐的中和反应.

[ 离子方程式的书写步骤 ]

(1) “写”:写出完整的化学方程式.

(2) “拆”:将化学方程式中易溶于水、易电离的物质 ( 强酸、强碱、可溶性盐 ) 拆开

改写为离子形式;而难溶于水的物质 ( 难溶性盐、难溶性碱 ) 、难电离的物质 ( 水、

弱酸、弱碱 ) 、氧化物、气体等仍用化学式表示.

(3) “删”:将方程式两边相同的离子 ( 包括个数 ) 删去,并使各微粒符号前保持最简

单的整数比.

(4) “查”:检查方程式中各元素的原子个数和电荷总数是否左右相等.

[ 复分解反应类型离子反应发生的条件 ]

复分解反应总是朝着溶液中自由移动的离子数目减少的方向进行.具体表现为:

(1) 生成难溶于水的物质.如: Ba2 + + SO42 -= BaSO4 ↓

(2) 生成难电离的物质 ( 水、弱酸、弱碱 ) .如 H + + OH -= H2O

(3) 生成气体.如: CO32 - + 2H += CO2 ↑ + H2O

3 .化学反应中的能量变化

[ 放热反应 ] 放出热量的化学反应.在放热反应中,反应物的总能量大于生成物的

总能量:

反应物的总能量=生成物的总能量 + 热量 + 其他形式的能量

放热反应可以看成是“贮存”在反应物内部的能量转化并释放为热能及其他形式的能

量的反应过程.

[ 吸热反应 ] 吸收热量的化学反应.在吸热反应中,反应物的总能量小于生成物的

总能量:

生成物的总能量=反应物的总能量 + 热量 + 其他形式的能量吸热反应也可以看成是热能及其他形式的能量转化并“贮存”为生成物内部能量的反

应过程.

*[ 反应热 ]

(1) 反应热的概念:在化学反应过程中,放出或吸收的热量,统称为反应热.反应

热用符号△ H 表示,单位一般采用 kJ · mol - 1 .

(2) 反应热与反应物、生成物的键能关系:△ H =生成物键能的总和 -反应物键

能的总和

(3) 放热反应与吸热反应的比较.

反应热 放热反应 吸热反应

含义 反应物所具有的总能量大于生成物所具有的总能量,反应物转化为生成物

时放出热量 反应物所具有的总能量小于生成物所具有的总能量,反应物转化为

生成物时吸收热量

反应本身的

能量变化 反应放出热量后使反应本身的能量降低 反应吸收热量后使反应本身

的能量升高

表示符号或 Δ H 值 “-” Δ H < 0 “ + ” Δ H > 0

说明:放热反应和吸热反应过程中的能量变化示意图如图 3 — 1 — 2 所示.

[ 热化学方程式 ]

(1) 热化学方程式的概念:表明反应所放出或吸收热量的化学方程式,叫做热化学

方程式.

(2) 书写热化学方程式时应注意的问题:

①需注明反应的温度和压强.因为反应的温度和压强不同时,其△ H 也不同.若

不注明时,则是指在 101kPa 和 25 ℃时的数据.

②反应物、生成物的聚集状态要注明.同一化学反应,若物质的聚集状态不同,

则反应热就不同.例如:

H2(g) + 1/2O2(g) = H2O(g) △ H =- 241.8kJ · mol — 1

H2(g) + 1/2O2(g) = H2O(l) △ H =- 285.8kJ · mol — 1

比较上述两个反应可知,由 H2 与 O2 反应生成 1 mol H2O(l) 比生成 1 mol H2O(g)

多放出 44 kJ · mol — 1 的热量.③反应热写在化学方程式的右边.放热时△ H 用“-”,吸热时△ H 用“+”.

例如: H2(g) + 1/2O2(g) = H2O(g) - 241.8kJ · mol — 1

④热化学方程式中各物质前的化学计量数不表示分子个数,而只表示物质的量

(mol) ,因此,它可用分数表示.对于相同物质的反应,当化学计量数不同时,其

△ H 也不同.例如:

2H2(g) + O2(g) = 2H2O(g) △ Hl =- 483.6 kJ · mol — 1

H2(g) + 1/2O2(g) = H2O(g) △ H2 =- 241.8kJ · mol — 1

显然,△ Hl = 2 △ H2 .

*[ 盖斯定律 ] 对于任何一个化学反应,不管是一步完成还是分几步完成,其反应

热是相同的.也就是说,化学反应的反应热只与反应的始态 ( 各反应物 ) 和终态

( 各生成物 ) 有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,

则各步反应的反应热之和与该反应一步完成时的反应热是相同的.

*4 .燃烧热和中和热

燃烧热 中和热

定义 在 101 kPa 时, 1 mol 物质完全燃烧生成稳定的氧化物所放出热量 在稀溶

液中,酸跟碱发生中和反应而生成 1 mol H2O 时所放出的热量

热化学方程式中的表示形式 以燃烧 1mol 物质为标准来配平其余物质的化学计量

数 物质的化学计量数平其余物质的化学计量数

注意点 “完全燃烧”包含两个方面的意思:①燃烧的物质全部燃烧完;②生成稳

定氧化物,如 C 完全燃烧生成 CO2 , S 完全燃烧生成 SO2 ;等等 当强酸与强碱在

稀溶液中发生中和反应时, 1 molH +与 1 molOH -发生反应生成 1 molH2O ,都

放出 57 . 3kJ 的热量.即:

H + (aq) + OH - (aq) = H2O(1)

△ H =- 57.3 kJ · mol - 1

说明 利用燃烧热可以计算物质在燃烧过程中所放出的热量 当强酸与弱碱或弱酸

与强碱或弱酸与弱碱发生中和反应时,因生成的盐会发生水解而吸热,故此时中和

热要小于 57.3 kJ · mol - 1

高中化学知识点规律大全

——碱金属

1 .钠[ 钠的物理性质 ] 很软,可用小刀切割;具有银白色金属光泽 ( 但常见的钠的表面

为淡黄色 ) ;密度比水小而比煤油大 ( 故浮在水面上而沉于煤油中 ) ;熔点、沸点

低;是热和电的良导体.

[ 钠的化学性质 ]

Na 与 O2 反应:

常温下: 4Na + O2 = 2Na2O , 2Na2O + O2 = 2Na2O2 ( 所以钠表面的氧化层既

有 Na2O 也有 Na2O2 ,且 Na2O2 比 Na2O 稳定 ) .

加热时: 2Na + O2Na2O2( 钠在空气中燃烧,发出黄色火焰,生成淡黄色固体 ) .

(2)Na 与非金属反应:钠可与大多数的非金属反应,生成 +1 价的钠的化合物.例

如:

2Na + C122NaCl 2Na + SNa2S

(3)Na 与 H2O 反应.化学方程式及氧化还原分析:

离子方程式: 2Na + 2H2O = 2Na + + 2OH - + H2 ↑

Na 与 H2O 反应的现象: ①浮 ②熔 ⑧游 ④鸣 ⑤红.

(4)Na 与酸溶液反应.例如: 2Na + 2HCl = 2NaCl + H2 ↑ 2Na + H2SO4 = Na2SO4

+ H2 ↑

由于酸中 H +浓度比水中 H +浓度大得多,因此 Na 与酸的反应要比水剧烈得多.

钠与酸的反应有两种情况:

①酸足量 ( 过量 ) 时:只有溶质酸与钠反应.

②酸不足量时:钠首先与酸反应,当溶质酸反应完后,剩余的钠再与水应.因此,

在涉及有关生成的 NaOH 或 H2 的量的计算时应特别注意这一点.

(5)Na 与盐溶液的反应.在以盐为溶质的水溶液中,应首先考虑钠与水反应生成

NaOH 和 H2 ,再分析 NaOH 可能发生的反应.例如,把钠投入 CuSO4 溶液中:

2Na + 2H2O = 2NaOH + H2 ↑ 2NaOH + CuSO4 = Cu(OH)2 ↓ + Na2SO4

注意:钠与熔融的盐反应时,可置换出盐中较不活泼的金属.例如:

4Na + TiCl4( 熔融 ) 4NaCl + Ti

[ 实验室中钠的保存方法 ] 由于钠的密度比煤油大且不与煤油反应,所以在实验室

中通常将钠保存在煤油里,以隔绝与空气中的气体和水接触.

钠在自然界里的存在:由于钠的化学性质很活泼,故钠在自然界中只能以化合态

的形式 ( 主要为 NaCl ,此外还有 Na2SO4 、 Na2CO3 、 NaNO3 等 ) 存在.[ 钠的主要用途 ]

(1) 制备过氧化钠. ( 原理: 2Na + O2Na2O2)

(2)Na - K 合金 ( 常温下为液态 ) 作原子反应堆的导热剂. ( 原因: Na - K 合金熔

点低、导热性好 )

(3) 冶炼如钛、锆、铌、钽等稀有金属. ( 原理: 金属钠为强还原剂 )

(4) 制高压钠灯. ( 原因: 发出的黄色光射程远,透雾能力强 )

2 .钠的化合物

[ 过氧化钠 ]

物理性质 淡黄色固体粉末

化学性质 与 H2O 反应 2Na2O2 + 2H2O = 4NaOH + O2

现象:反应产生的气体能使余烬的木条复燃;反应放出的热能使棉花燃烧起来

与 CO2 反应 2Na2O2 + 2CO2 = 2Na2CO3 + O2 说明:该反应为放热反应

强氧化剂 能使织物、麦秆、羽毛等有色物质褪色

用 途 呼吸面具和潜水艇里氧气的来源;作漂白剂

说明 (1)Na2O2 与 H2O 、 CO2 发生反应的电子转移情况如下:

由此可见,在这两个反应中, Na2O2 既是氧化剂又是还原剂, H2O 或 CO2 只作

反应物,不参与氧化还原反应.

(2) 能够与 Na2O2 反应产生 O2 的,可能是 CO2 、水蒸气或 CO2 和水蒸气的混合气

体.

(3) 过氧化钠与水反应的原理是实验室制氧气方法之一,其发生装置为“固 + 液 →

气体”型装置.

[ 碳酸钠与碳酸氢钠 ]

Na2CO3 NaHCO3

俗名 纯碱、苏打 小苏打

颜色、状态 白色粉末.碳酸钠结晶水合物的化学式为 Na2CO3 · 10H2O 白色晶

体.无结晶水合物

水溶性 易溶于水 溶于水,但溶解度比 Na2CO3 小 热稳定性 加热不分解 加热易分解.化学方程式为:

2NaHCO3 Na2CO3 + CO2 ↑ + H2O

与酸反应 较缓慢.反应分两步进行:

CO32 - + H + = HCO3 -

HCO3 - + H + = CO2 ↑ + H2O 较剧烈,放出 CO2 的速度快

HCO3 - + H + = CO2 ↑ +H2O

与 NaOH

反应 不反应 NaHCO3 + NaOH = Na2CO3 + H2O

酸式盐与碱反应可生成盐和水

与 CaCl2

溶液反应 CO32 - + Ca2 + = CaCO3 ↓ 不反应。 Ca(HCO3)2 溶于水

鉴别方法 ①固态时: 分别加热,能产生使澄清石灰水变浑浊气体的是 NaHCO3

②溶液中: 分别加入 CaCl2 或 BaCl2 溶液,有白色沉淀产生的是 Na2CO3

主要用途 ①用于玻璃、制皂、造纸等

②制烧碱 ①用作制糕点的发酵粉②用于泡沫灭火器③治疗胃酸过多

相互关系

说明 (1) 由于 NaHCO3 在水中的溶解度小于 Na2CO3 ,因此,向饱和的 Na2CO3 溶

液中通入 CO2 气体,能析出 NaHCO3 晶体.

(2) 利用 Na2CO3 溶液与盐酸反应时相互滴加顺序不同而实验现象不同的原理,可

在不加任何外加试剂的情况下,鉴别 Na2CO3 溶液与盐酸.

*[ 侯氏制碱法制 NaHCO3 和 Na2CO3 的原理 ] 在饱和 NaCl 溶液中依次通入足量的

NH3 、 CO2 气体,有 NaHCO3 从溶液中析出.有关反应的化学方程式为:

NH3 + H2O + CO2 = NH4HCO3 NH4HCO3 + NaCl = NaHCO3 ↓ + NH4Cl

2NaHCO3 Na2CO3 + H2O + CO2 ↑

3 .碱金属元素

[ 碱金属元素的原子结构特征 ]

碱金属元素包括锂 (Li) 、钠 (Na) 、钾 (K) 、铷 (Rb) 、铯 (Cs) 和放射性元素钫 (Fr) .(1) 相似性:原子的最外层电子数均为 1 个,次外层为 8 个 (Li 原子次外层电子数

为 2 个 ) .因此,在化学反应中易失去 1 个电子而显 +1 价.

(2) 递变规律:随着碱金属元素核电荷数增多,电子层数增多,原子半径增大,失

电子能力增强,金属活动性增强.

[ 碱金属的物理性质 ]

(1) 相似性:①都具有银白色金属光泽 ( 其中铯略带金黄色 ) ;②柔软;③熔点低;

④密度小,其中 Li 、 Na 、 K 的密度小于水的密度;⑤导电、导热性好.

(2) 递变规律:从 Li → Cs ,随着核电荷数的递增,密度逐渐增大 ( 特殊: K 的密

度小于 Na 的密度 ) ,但熔点、沸点逐渐降低.

[ 碱金属的化学性质 ]

碱金属的化学性质与钠相似.由于碱金属元素原子的最外层电子数均为 1 个,因此

在化学反应中易失去 1 个电子,具有强还原性,是强还原剂;又由于从 Li → Cs ,

随着核电荷数的递增,电子层数增多,原子半径增大,原子核对最外层电子吸引力

减弱,故还原性增强.

(1) 与 O2 等非金属反应.从 Li → Cs ,与 O2 反应的剧烈程度逐渐增加.

① Li 与 O2 反应只生成 Li2O : 4Li + O22Li2O

②在室温下, Rb 、 Cs 遇到空气立即燃烧;

③ K 、 Rb 、 Cs 与 O2 反应生成相应的超氧化物 KO2 、 RbO2 、 CsO2 .

(2) 与 H2O 反应.发生反应的化学方程式可表示为:

2R + 2H2O = 2ROH + H2 ↑ (R 代表 Li 、 Na 、 K 、 Rb 、 Cs) .

从 Li → Na ,与 H2O 反应的剧烈程度逐渐增加. K 与 H2O 反应时能够燃烧并发生

轻微爆炸; Rb 、 Cs 遇 H2O 立即燃烧并爆炸.生成的氢氧化物的碱性逐渐增强

( 其中 LiOH 难溶于水 ) .

[ 焰色反应 ] 是指某些金属或金属化合物在火焰中灼烧时,火焰呈现出的特殊的颜

色.

一些金属元素的焰色反应的颜色:

钠——黄色;钾——紫色;锂——紫红色;铷——紫色;

钙—一砖红色;锶——洋红色;钡——黄绿色;铜——绿色.

(2) 焰色反应的应用:检验钠、钾等元素的存在.

高中化学知识点规律大全——卤素

  1. 氯气

[ 氯气的物理性质 ]

(1) 常温下,氯气为黄绿色气体.加压或降温后液化为液氯,进一步加压或降温则

变成固态氯. (2) 常温下,氯气可溶于水 (1 体积水溶解 2 体积氯气 ) . (3) 氯气有

毒并具有强烈的刺激性,吸入少量会引起胸部疼痛和咳嗽,吸入大量则会中毒死

亡.因此,实验室闻氯气气味的正确方法为:用手在瓶口轻轻扇动,仅使少量的氯

气飘进鼻孔.

[ 氯气的化学性质 ]

画出氯元素的原子结构示意图:

氯原子在化学反应中很容易获得 1 个电子.所以,氯气的化学性质非常活泼,是一

种强氧化剂.

(1) 与金属反应: Cu + C12CuCl2

实验现象:铜在氯气中剧烈燃烧,集气瓶中充满了棕黄色的烟.一段时间后,集气

瓶内壁附着有棕黄色的固体粉末.向集气瓶内加入少量蒸馏水,棕黄色固体粉末溶

解并形成绿色溶液,继续加水,溶液变成蓝色.

2Na + Cl22NaCl 实验现象:有白烟产生.

说明 ①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物.其

中,变价金属如 (Cu 、 Fe) 与氯气反应时呈现高价态 ( 分别生成 CuCl2 、 FeCl3) .

②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯.

③“烟”是固体小颗粒分散到空气中形成的物质.如铜在氯气中燃烧,产生的棕黄色

的烟为 CuCl2 晶体小颗粒;钠在氯气中燃烧,产生的白烟为 NaCl 晶体小颗粒;等

等.

(2) 与氢气反应. H2 + Cl2 2HCl

注意 ①在不同的条件下, H2 与 C12 均可发生反应,但反应条件不同,反应的现

象也不同.点燃时,纯净的 H2 能在 C12 中安静地燃烧,发出苍白色的火焰,反应

产生的气体在空气中形成白雾并有小液滴出现;在强光照射下, H2 与 C12 的混合

气体发生爆炸.

②物质的燃烧不一定要有氧气参加.任何发光、发热的剧烈的化学反应,都属于

燃烧.如金属铜、氢气在氯气中燃烧等.

③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的

物质.要注意“雾”与“烟”的区别. ④ H2 与 Cl2 反应生成的 HCl 气体具有刺激性气味,极易溶于水. HCl 的水溶液叫

氢氯酸,俗称盐酸.

(3) 与水反应.

化学方程式: C12 + H2O = HCl + HClO 离子方程式: Cl2 + H2O = H + + Cl -

+ HClO

说明 ① C12 与 H2O 的反应是一个 C12 的自身氧化还原反应.其中, Cl2 既是氧

化剂又是还原剂, H2O 只作反应物.

②在常温下, 1 体积水能溶解约 2 体积的氯气,故新制氯水显黄绿色.同时,溶

解于水中的部分 C12 与 H2O 反应生成 HCl 和 HClO ,因此,新制氯水是一种含有

三种分子 (C12 、 HClO 、 H2O) 和四种离子 (H +、 Cl -、 ClO -和水电离产生的

少量 OH - ) 的混合物.所以,新制氯水具有下列性质:酸性 (H + ) ,漂白作用

( 含 HClO) , Cl -的性质, C12 的性质.

③新制氯水中含有较多的 C12 、 HClO ,久置氯水由于 C12 不断跟 H2O 反应和

HClO 不断分解,使溶液中的 C12 、 HClO 逐渐减少、 HCl 逐渐增多,溶液的 pH 逐

渐减小,最后溶液变成了稀盐酸,溶液的 pH < 7 .

④ C12 本身没有漂白作用,真正起漂白作用的是 C12 与 H2O 反应生成的

HClO .所以干燥的 C12 不能使干燥的有色布条褪色,而混有水蒸气的 C12 能使干

燥布条褪色,或干燥的 C12 能使湿布条褪色.

⑤注意“氯水”与“液氯”的区别,氯水是混合物,液氯是纯净物.

(4) 与碱反应.常温下,氯气与碱溶液反应的化学方程式的通式为:

氯气 + 可溶碱 → 金属氯化物 + 次氯酸盐 + 水.重要的反应有:

C12 + 2NaOH = NaCl + NaClO + H2O 或 Cl2 + 2OH -= Cl - + ClO - + H2O

该反应用于实验室制 C12 时,多余 Cl2 的吸收(尾气吸收).

2Cl2 + 2Ca(OH)2 = Ca(C1O)2 + CaCl2 + 2H2O

说明 ① Cl2 与石灰乳 [Ca(OH)2 的悬浊液 ] 或消石灰的反应是工业上生产漂粉精或

漂白粉的原理.漂粉精和漂白粉是混合物,其主要成分为 Ca(ClO)2 和 CaCl2 ,有

效成分是 Ca(C1O)2

②次氯酸盐比次氯酸稳定.

③漂粉精和漂白粉用于漂白时,通常先跟其他酸反应,如:

Ca(ClO)2+2HCl = CaCl2+2HClO④漂粉精和漂白粉露置于潮湿的空气中易变质,所以必须密封保存.有关反应的

化学方程式为: Ca(ClO)2 + CO2 + H2O = CaCO3 ↓ + 2HClO 2HClO2HCl + O2 ↑

由此可见,漂粉精和漂白粉也具有漂白、消毒作用.

[ 氯气的用途 ]

①杀菌消毒;②制盐酸;⑧制漂粉精和漂白粉;④制造氯仿等有机溶剂和各种农

药.

[ 次氯酸 ]

①次氯酸 (HClO) 是一元弱酸 ( 酸性比 H2CO3 还弱 ) ,属于弱电解质,在新制氯水

中主要以 HClO 分子的形式存在,因此在书写离子方程式时应保留化学式的形式.

② HClO 不稳定,易分解,光照时分解速率加快.有关的化学方程式为:

2HClO = 2H + + 2Cl - + O2 ↑,因此 HClO 是一种强氧化剂.

③ HClO 能杀菌.自来水常用氯气杀菌消毒 ( 目前已逐步用 C1O2 代替 ) .

④ HClO 能使某些染料和有机色素褪色.因此,将 Cl2 通入石蕊试液中,试液先变

红后褪色.

[ 氯气的实验室制法 ]

(1) 反应原理:实验室中,利用氧化性比 C12 强的氧化剂 [ 如 MnO2 、 KMnO4 、

KClO3 、 Ca(ClO)2 等 ] 将浓盐酸中的 Cl -氧化来制取 C12 。例如:

MnO2 + 4HCl( 浓 ) MnCl2 + C12 ↑ + 2H2O

2KMnO4 + 16HCl( 浓 ) = 2KCl + 2MnCl2 + 5Cl2 ↑ + 8H2O

(2) 装置特点:根据反应物 MnO2 为固体、浓盐酸为液体及反应需要加热的特点,

应选用“固 + 液加热型”的气体发生装置.所需的仪器主要有圆底烧瓶 ( 或蒸馏烧

瓶 ) 、分液漏斗、酒精灯、双孔橡胶塞和铁架台 ( 带铁夹、铁圈 ) 等.

(3) 收集方法:氯气溶于水并跟水反应,且密度比空气大,所以应选用向上排气法

收集氯气.此外,氯气在饱和 NaCl 溶液中的溶解度很小,故氯气也常用排饱和食

盐水的方法收集,以除去混有的 HCl 气体.因此在实验室中,要制取干燥、纯净的

Cl2 ,常将反应生成的 C12 依次通过盛有饱和 NaCl 溶液和浓硫酸的洗气瓶.

(4) 多余氯气的吸收方法:氯气有毒,多余氯气不能排放到空气中,可使用 NaOH

溶液等强碱溶液吸收,但不能使用石灰水,因为 Ca(OH)2 的溶解度较小,不能将

多余的氯气完全吸收.

(5) 应注意的问题:①加热时,要小心地、不停地移动火焰,以控制反应温度.当氯气出来较快时,

可暂停加热.要防止加强热,否则会使浓盐酸里的氯化氢气体大量挥发,使制得的

氯气不纯而影响实验.

②收集氯气时,导气管应插入集气瓶底部附近,这样收集到的氯气中混有的空气

较少.

③利用浓盐酸与足量的 MnO2 共热制取 C12 时,实际产生的 C12 的体积总是比理

论值低.主要原因是:随着反应不断进行,浓盐酸会渐渐变稀,而稀盐酸即使是在

加热的条件下也不能与 MnO2 反应.

[Cl -的检验 ]

方法 向待检溶液中加入 AgNO3 溶液,再加入稀 HNO3 ,若产生白色沉淀,则原

待检液中含有 C1 -.

注意 (1) 不能加入盐酸酸化,以防止引入 C1 -(若酸化可用稀 HNO3 ).

(2) 若待检液中同时含有 SO42 —或 SO32 —时,则不能用 HNO3 酸化的 AgNO3 溶

液来检验 Cl -,因为生成的 Ag2SO4 也是不溶于稀 HNO3 的白色沉淀 (SO32 -能

被 HNO3 氧化为 SO42 - ) .

2 .卤族元素

[ 卤族元素 ] 简称卤素.包括氟 (F) 、氯 (C1) 、溴 (Br) 、碘 (I) 和放射性元素砹

(At) .在自然界中卤素无游离态,都是以化合态的形式存在.

[ 卤素单质的物理性质 ]

颜色 状态

( 常态 ) 熔点、沸点 溶解度 ( 水中 ) 密度

F2 浅黄绿色 浅

深 气体 低

高 降

低 小

Cl2 黄绿色 气体 部分溶于水,并与水发生不同程度反应

Br2 深红棕色 液体 易挥发

I2 紫黑色 固体 升华

说明 (1) 实验室里,通常在盛溴的试剂瓶中加水 ( 即“水封” ) ,以减少溴的挥发.(2) 固态物质不经液态而直接变成气态的现象,叫做升华.升华是一种物理变

化.利用碘易升华的性质,可用来分离、提纯单质碘.

(3)Br2 、 I2 较难溶于水而易溶于如汽油、苯、四氯化碳、酒精等有机溶剂中.医

疗上用的碘酒,就是碘 ( 溶质 ) 的酒精 ( 溶剂 ) 溶液.利用与水互不相溶的有机溶

剂可将 Br2 、 I2 从溴水、碘水中提取出来 ( 这个过程叫做萃取 ) .

[ 卤素单质的化学性质 ]

(1) 卤素的原子结构及元素性质的相似性、递变性.

氟 F 氯 Cl 溴 Br 碘 I

核电荷数 9 17 35 53

原子结构的相似性 最外层上的电子数都是 7 个

卤素化学性质的相似性 ①氟只有- 1 价,其余卤素有- l 、 +1 、 +3 、 +5 、 +7

价②单质都具有强氧化性,是强氧化剂③单质均能与 H2 化合生成卤化氢气体,

与金属单质化合生成金属卤化物④单质都能与水、强碱反应, Br2 、 I2 的反应与

C12 类似

原子结构的递变性 核电荷数

电子层数

少 多

原子半径 小 大

化学性质的递变 性 原子得电子能力

强 弱

单质的氧化性

单质与氢气化合 易 难

单质与水反应 剧烈 缓慢 ( 微弱 )

对应阴离子的还原性 弱 强

(2) 卤素单质与氢气的反应.

F2 Cl2 Br2 I2

与 H2 化合的条件 冷、暗 点燃或光照 500 ℃ 持续加热

反应情况 爆炸 强光照射时爆炸 缓慢化合 缓慢化合,生成的 HI 同时分解

产生卤化氢的稳定性 HF > HCl > HBr > HI

(3) 卤素单质与水的反应.

① 2F2 + 2H2O = 4HF + O2( 置换反应 )

注意:将 F2 通入某物质的水溶液中, F2 先跟 H2O 反应.如将 F2 通入 NaCl 的水

溶液中,同样发生上述反应,等等.

② X2 + H2O = HX + HXO (X = C1 、 Br 、 I) .

(4) 卤素单质间的置换反应.

2NaBr + C12( 新制、饱和 ) = 2NaCl + Br2 2Br - + C12 = 2C1 - + Br2

说明 加入 CCl4 并振荡后,液体分层.上层为含有 NaCl 的水层,无色;下层为溶

有 Br2 的 CCl4 层,显橙色.

2NaI + C12( 新制、饱和 ) = 2NaCl + I2 2I - + Cl2 = 2C1 - + I2

说明 ①加入 CCl4 并振荡后,液体分层.上层为含有 NaI 的水层,无色;下层为

溶有 I2 的 CCl4 层,显紫红色.

②将反应后的溶液加热蒸干灼烧,生成的 I2 升华,故残留的固体为 NaCl(C12 足

量时 ) 或 NaCl 和 NaI 的混合物 (C12 不足量时 ) .

2NaI + Br2 = 2NaBr + I2 2I - + Br2 = 2Br - + I2

说明 ①加入 CCl4 并振荡后,液体分层.上层为含有 NaBr 的水层,无色,下层为

溶有 I2 的 CCl4 层,显紫红色.

②将反应后的溶液加热蒸干灼烧,生成的 I2 升华,故残留的固体为 NaBr(Br2 足

量时 ) 或 NaBr 和 NaI(Br2 不足量时 ) .

F2 + NaX( 熔融 ) = 2NaF + X2 (X = C1 、 Br 、 I)

注意 将 F2 通入含 Cl -、 Br -或 I -的水溶液中,不是发生卤素间的置换反应,

而是 F2 与 H2O 反应.

(5) 碘单质 (I2) 的化学特性. I2 + 淀粉溶液 → 蓝色溶液

说明 ①利用碘遇淀粉变蓝的特性,可用来检验 I2 的存在.

②只有单质碘 (I2) 遇淀粉才显蓝色,其他价态的碘无此性质.例如,向 NaI 溶液

中滴加淀粉,溶液颜色无变化.若再滴加新制氯水,因有 I2 被置换出来,则此时

溶液显蓝色.[ 可逆反应 ] 向生成物方向进行的反应叫正反应;向反应物方向进行的反应叫逆反

应.在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应,

叫做可逆反应.

说明 (1) 判断一个反应是否是可逆反应,必须满足两个条件:①在同一条件下;

②正、逆反应同时进行.如 H2 + I22HI ,生成的 HI 在持续加热的条件下同时分解,

故该反应为可逆反应.而如: 2H2 + O2 2H2O 2H2O 2H2 ↑ + O2 ↑ 这两个反应就不

是可逆反应.

(2) 在化学方程式中,用可逆符号“”表示可逆反应.

[ 卤化银 ]

AgF AgCl AgBr AgI

颜 色 白色 白色 浅黄色 黄色

逐 渐 加 深

溶解性 易溶于水 难溶于水,也难溶于稀 HNO3

感光性 见光分解: 2AgX 2Ag + X2 (X = Cl 、 Br 、 I)

用 途 ①检验 X -: Ag + + X -= AgX ↓ ( 试剂为 AgNO3 溶液和稀 HNO3)

②制作感光材料 ( 常用 AgBr) ③ AgI 用于人工降雨

[ 碘的化合物 ] 碘的化合物有 KIO3( 碘酸钾 ) 、 KI 等.人体中的碘主要存在于甲状

腺内,人体如果缺碘,就会患甲状腺肿症 ( 大脖子病 ) .为防止碘缺乏病,最为方

便、有效的方法就是食用加碘盐,通常加入的是碘酸钾.

3 .物质的量应用于化学方程式的计算

(1) 原理:化学方程式中各物质的化学计量数之比,可以表示各物质的:

①微粒数之比;②物质的量之比;③同温、同压下气体的体积之比;④并可计算

质量之比。例如:

2CO + O2 = 2CO2

化学计量数比 2 ∶ 1 ∶ 2

物质的量比 2mol ∶ 1mol ∶ 2mol

同温、同压下气体体积比 2 体积 ∶ 1 体积 ∶ 2 体积

标准状况下的体积比 2 × 22.4L ∶ 1 × 22.4L ∶ 2 × 22.4L质量比 2 × 28g ∶ 1 × 32g ∶ 2 × 44g

(2) 注意点:物质的量应用于化学方程式的计算时,同一物质的物理量的单位要保

持一致,不同物质的物理量的单位要相互对应,即单位的使用要“上下一致、左右

相当”.

高中化学知识点规律大全

——物质结构 元素周期律

1 .原子结构

[ 核电荷数、核内质子数及核外电子数的关系 ] 核电荷数=核内质子数=原子核外

电子数

注意: (1) 阴离子:核外电子数=质子数+所带的电荷数

阳离子:核外电子数=质子数-所带的电荷数

(2) “核电荷数”与“电荷数”是不同的,如 Cl -的核电荷数为 17 ,电荷数为 1 .

[ 质量数 ] 用符号 A 表示.将某元素原子核内的所有质子和中子的相对质量取近似

整数值相加所得的整数值,叫做该原子的质量数.

说明 (1) 质量数 (A) 、质子数 (Z) 、中子数 (N) 的关系: A = Z + N . (2) 符号 X

的意义:表示元素符号为 X ,质量数为 A ,核电荷数 ( 质子数 ) 为 Z 的一个原

子.例如, Na 中, Na 原子的质量数为 23 、质子数为 11 、中子数为 12 .

[ 原子核外电子运动的特征 ]

(1) 当电子在原子核外很小的空间内作高速运动时,没有确定的轨道,不能同时准

确地测定电子在某一时刻所处的位置和运动的速度,也不能描绘出它的运动轨

迹.在描述核外电子的运动时,只能指出它在原子核外空间某处出现机会的多少.

(2) 描述电子在原子核外空间某处出现几率多少的图像,叫做电子云.电子云图中

的小黑点不表示电子数,只表示电子在核外空间出现的几率.电子云密度的大小,

表明了电子在核外空间单位体积内出现几率的多少.

(3) 在通常状况下,氢原子的电子云呈球形对称。在离核越近的地方电子云密度越

大,离核越远的地方电子云密度越小.

[ 原子核外电子的排布规律 ]

(1) 在多电子原子里,电子是分层排布的.

电子层数( n ) 1 2 3 4 5 6 7

表示符号 K L M N O P Q 离核远近能量高低 n 值越大,电子离原子核越远,电子具有的能量越高

(2) 能量最低原理:电子总是尽先排布在能量最低的电子层里,而只有当能量最低

的电子层排满后,才依次进入能量较高的电子层中.因此,电子在排布时的次序为:

K → L → M ……

(3) 各电子层容纳电子数规律:①每个电子层最多容纳 2n2 个电子 (n = 1 、

2 …… ) .②最外层容纳的电子数≤ 8 个 (K 层为最外层时≤ 2 个 ) ,次外层容纳的电

子数≤ 18 个,倒数第三层容纳的电子数≤ 32 个.例如:当 M 层不是最外层时,最

多排布的电子数为 2 × 32 = 18 个;而当它是最外层时,则最多只能排布 8 个电子.

(4) 原子最外层中有 8 个电子 ( 最外层为 K 层时有 2 个电子 ) 的结构是稳定的,这

个规律叫“八隅律”.但如 PCl5 中的 P 原子、 BeCl2 中的 Be 原子、 XeF4 中的 Xe 原

子,等等,均不满足“八隅律”,但这些分子也是稳定的.

2 .元素周期律

[ 原子序数 ] 按核电荷数由小到大的顺序给元素编的序号,叫做该元素的原子序数.

原子序数=核电荷数=质子数=原子的核外电子数

[ 元素原子的最外层电子排布、原子半径和元素化合价的变化规律 ]

对于电子层数相同(同周期)的元素,随着原子序数的递增:

(1) 最外层电子数从 1 个递增至 8 个 (K 层为最外层时,从 1 个递增至 2 个 ) 而呈

现周期性变化.

(2) 元素原子半径从大至小而呈现周期性变化 ( 注:稀有气体元素的原子半径因测

定的依据不同,而在该周期中是最大的 ) .

(3) 元素的化合价正价从 +1 价递增至 +5 价 ( 或 +7 价 ) ,负价从- 4 价递增至- 1

价再至 0 价而呈周期性变化.

[元素金属性、非金属性强弱的判断依据]

元素金属性强弱的判断依据:①金属单质跟水 ( 或酸 ) 反应置换出氢的难易程

度.金属单质跟水 ( 或酸 ) 反应置换出氢越容易,则元素的金属性越强,反之越

弱.②最高价氧化物对应的水化物——氢氧化物的碱性强弱.氢氧化物的碱性越

强,对应金属元素的金属性越强,反之越弱.③还原性越强的金属元素原子,对

应的金属元素的金属性越强,反之越弱.(金属的相互置换)

元素非金属性强弱的判断依据:①非金属单质跟氢气化合的难易程度 ( 或生成的

氢化物的稳定性 ) ,非金属单质跟氢气化合越容易 ( 或生成的氢化物越稳定 ) ,元

素的非金属性越强,反之越弱.②最高价氧化物对应的水化物 ( 即最高价含氧酸 )

的酸性强弱.最高价含氧酸的酸性越强,对应的非金属元素的非金属性越强,反之越弱.③氧化性越强的非金属元素单质,对应的非金属元素的非金属性越强,反

之越弱.(非金属相互置换)

[ 两性氧化物 ] 既能跟酸反应生成盐和水,又能跟碱反应生成盐和水的氧化物,叫

做两性氧化物.如 A12O3 与盐酸、 NaOH 溶液都能发生反应: A12O3+6H +=

2A13 + +3H2O A12O3+2OH -= 2A1O2 - +H2O

[ 两性氢氧化物 ] 既能跟酸反应又能跟碱反应的氢氧化物,叫做两性氢氧化物.如

A1(OH)3 与盐酸、 NaOH 溶液都能发生反应: Al(OH)3+3H += 2A13 + +3H2O

A1(OH)3+OH -= A1O2 - +2H2O

[ 原子序数为 11 — 17 号主族元素的金属性、非金属性的递变规律 ]

Na Mg Al Si P S Cl

原子序数 11 12 13 14 15 16 17

单质与水 ( 或酸 )

的反应情况 与冷水剧烈反应 与冷水反应缓慢,与沸水剧烈反应 与沸水反应很缓

慢,与冷水不反应, 部分溶于水,部分与水反应

非金属单质与氢气化合情况 反应

条件 高温 磷蒸汽与氢气能反应 加热 光照或点燃

氢化物稳定性 SiH4

极不

稳定 PH3

高温

分解 H2S

受热

分解 HCl

很稳定

最高价氧化物

对应水化物

的碱 ( 酸 ) 性强弱 NaOH

强碱 Mg(OH)2

中强碱 Al(OH)3或 H3AlO3 两性氢氧化物 H4SiO4

极弱酸 H3PO4

中强酸 H2SO4

强酸 HClO4

强酸

金属性、非金属性

递变规律 金属性逐渐减弱、非金属性逐渐增强

[ 元素周期律 ] 元素的性质随着原子序数的递增而呈周期性变化,这个规律叫做元

素周期律.

3 .元素周期表

[ 元素周期表 ] 把电子层数相同的各种元素,按原子序数递增的顺序从左到右排成

横行,再把不同横行中最外层电子数相同的元素,按电子层数递增的顺序由上至下

排成纵行,这样得到的一个表叫做元素周期表.

[ 周期 ] 具有相同的电子层数的元素按原子序数递增的顺序排列而成的一个横行,

叫做一个周期.

(1) 元素周期表中共有 7 个周期,其分类如下:

短周期 (3 个 ) :包括第一、二、三周期,分别含有 2 、 8 、 8 种元素

周期( 7 个) 长周期 (3 个 ) :包括第四、五、六周期,分别含有 18 、 18 、 32

种元素

不完全周期:第七周期,共 26 种元素 (1999 年又发现了 114 、 116 、 118 号三

种元素 )

(2) 某主族元素的电子层数=该元素所在的周期数.

(3) 第六周期中的 57 号元素镧 (La) 到 71 号元素镥 (Lu) 共 15 种元素,因其原子的

电子层结构和性质十分相似,总称镧系元素.

(4) 第七周期中的 89 号元素锕 (Ac) 到 103 号元素铹 (Lr) 共 15 种元素,因其原子

的电子层结构和性质十分相似,总称锕系元素.在锕系元素中, 92 号元素铀 (U)

以后的各种元素,大多是人工进行核反应制得的,这些元素又叫做超铀元素.

[ 族 ] 在周期表中,将最外层电子数相同的元素按原子序数递增的顺序排成的纵

行叫做一个族.

(1) 周期表中共有 18 个纵行、 16 个族.分类如下: ①既含有短周期元素同时又含有长周期元素的族,叫做主族.用符号“ A ”表

示.主族有 7 个,分别为 I A 、Ⅱ A 、Ⅲ A 、Ⅳ A 、 VA 、Ⅵ A 、Ⅶ A 族 ( 分别位

于周期表中从左往右的第 1 、 2 、 13 、 14 、 15 、 16 、 17 纵行 ) .

②只含有短周期元素的族,叫做副族.用符号“ B ”表示.副族有 7 个,分别为 I

B 、Ⅱ B 、Ⅲ B 、Ⅳ B 、 VB 、Ⅵ B 、Ⅶ B 族 ( 分别位于周期表中从左往右的第

11 、 12 、 3 、 4 、 5 、 6 、 7 纵行 ) .

③在周期表中,第 8 、 9 、 10 纵行共 12 种元素,叫做Ⅷ族.

④稀有气体元素的化学性质很稳定,在通常情况下以单质的形式存在,化合价为

0 ,称为 0 族 ( 位于周期表中从左往右的第 18 纵行 ) .

(2) 在元素周期表的中部,从Ⅲ B 到Ⅱ B 共 10 个纵列,包括第Ⅷ族和全部副族元

素,统称为过渡元素.因为这些元素都是金属,故又叫做过渡金属.

(3) 某主族元素所在的族序数:该元素的最外层电子数=该元素的最高正价数

[ 原子序数与化合价、原子的最外层电子数以及族序数的奇偶关系 ]

(1) 原子序数为奇数的元素,其化合价通常为奇数,原子的最外层有奇数个电子,

处于奇数族.如氯元素的原子序数为 17 ,而其化合价有- 1 、 +1 、 +3 、 +5 、

+7 价,最外层有 7 个电子,氯元素位于第Ⅶ A 族.

(2) 原子序数为偶数的元素,其化合价通常为偶数,原子的最外层有偶数个电子,

处于偶数族.如硫元素的原子序数为 16 ,而其化合价有- 2 、 +4 、 +6 价,最外

层有 6 个电子,硫元素位于第Ⅵ A 族.

[ 元素性质与元素在周期表中位置的关系 ]

(1) 元素在周期表中的位置与原子结构、元素性质三者之间的关系:

(2) 元素的金属性、非金属性与在周期表中位置的关系:

①同一周期元素从左至右,随着核电荷数增多,原子半径减小,失电子能力减弱,

得电子能力增强. a .金属性减弱、非金属性增强; b .金属单质与酸 ( 或水 ) 反

应置换氢由易到难; c .非金属单质与氢气化合由难到易 ( 气态氢化物的稳定性增

强 ) ; d. 最高价氧化物的水化物的酸性增强、碱性减弱.

②同一主族元素从上往下,随着核电荷数增多,电子层数增多,原子半径增大,

失电子能力增强,得电子能力减弱. a .金属性增强、非金属性减弱; b .金属单

质与酸 ( 或水 ) 反应置换氢由难到易。 c .非金属单质与氢气化合由易到难 ( 气态

氢化物的稳定性降低 ) ; d .最高价氧化物的水化物的酸性减弱、碱性增强.

③在元素周期表中,左下方的元素铯 (Cs) 是金属性最强的元素;右上方的元素氟

(F) 是非金属性最强的元素;位于金属与非金属分界线附近的元素 (B 、 A1 、 Si 、

Ge 、 As 、 Sb 、 Te 等 ) ,既具有某些金属的性质又具有某些非金属的性质.(3) 元素化合价与元素在周期表中位置的关系:

①在原子结构中,与化合价有关的电子叫价电子.主族元素的最外层电子即为价

电子,但过渡金属元素的价电子还与其原子的次外层或倒数第三层的部分电子有关.

②对于非金属元素,最高正价 + 最低负价的绝对值= 8( 对于氢元素,负价为- 1 ,

正价为 +1) .

[ 核素 ] 具有一定数目的质子和一定数目的中子的一种原子,叫做一种核素.也就

是说,每一种原子即为一种核素,如 H 、 H 、 C 、 C 等各称为一种核素.

注意 核素有同种元素的核素 ( 如 H 、 H) 和不同种元素的核素 ( 如 C 、 C1 等 ) .

[ 同位素 ] 质子数相同而中子数不同的同一元素的不同原子互称同位素.

说明 (1) 只有同一种元素的不同核素之间才能互称同位素.即同位素的质子数必定

相同,而中子数一定不同,质量数也不同.

(2) 由于一种元素往往有多种同位素,因此同位素的种数要多于元素的种数.

(3) 同位素的特性:①物理性质不同 ( 质量数不同 ) ,化学性质相同;②在天然存

在的某种元素里,不论是游离态还是化合态,各种同位素所占的原子个数的百分比

是不变的.

(4) 氢元素的三种同位素:氕 H( 特例:该原子中不含中子 ) 、氘 H ( 或 D) 、氚

H( 或 T) .

(5) 重要同位素的用途: H 、 H 为制造氢弹的材料; U 为制造原子弹的材料和核

反应堆燃料.

[ 元素的相对原子质量 ] 按各种天然同位素原子的相对原子质量与其所占的原子百

分比 ( 摩尔分数 ) 求出的平均值.

(1) 元素的相对原子质量的求法:

设某元素有 A 、 B 、 C 三种同位素,其相对原子质量分别为 MA 、 MB 、 MC ……,

它们的原子个数百分比分别为 a% 、 b% 、 c% ,则:

该元素的相对原子质量= MA × a% + MB × b % + MC × c %+……

(2) 要特别注意对“元素的相对原子质量”、“原子的相对原子质量”、“原子的质量数”、

“原子的质量”这四个概念的辨析.

[ 元素周期律和元素周期表的意义 ]

1869 年,俄国化学家门捷列夫发现了元素周期律,并编制了第一张元素周期

表.到 20 世纪,随着原子结构理论的发展,元素周期律和周期表才发展为现在的

形式.(1) 利用元素周期律,可预言未知元素.元素周期律和元素周期表为新元素的发现

及预测它们的原子结构和性质提供了线索. (2) 利用元素周期律和元素周期表,在

周期表中一定的区域内寻找新元素.例如,在周期表右上角寻找制造新品种农药的

元素;在金属与非金属的分界处附近寻找半导体材料;在过渡元素中寻找催化剂和

耐高温、耐腐蚀的合金材料;等等. (3) 元素周期律从自然科学方面有力地论证了

事物变化中量变引起质变的规律性.

4 .化学键

[ 离子键 ] 使阴、阳离子结合而成的静电作用,叫做离子键.

说明 (1) 阴、阳离子间的静电作用包括静电排斥作用和吸引作用两个方面.

(2) 阴、阳离子通过静电作用所形成的化合物,叫做离子化合物.

[ 电子式 ] 在元素符号的周围用小黑点 ( ·或× ) 来表示原子最外层电子的式子,称

做电子式.电子式的几种表示方法:

(1) 原子的电子式:将原子的所有最外层电子数在元素符号的周围标出.例如:

氢原子 ( ) 、钠原子 () 、镁原子 ( ) 、铝原子 ( ) 、碳原子 ( ) 、氮原子 () 、硫原子

() 、氩原子 () .

(2) 离子的电子式:

①阴离子:在书写阴离子的电子式时,须在阴离子符号的周围标出其最外层的 8

个电子 (H -为 2 个电子 ) ,外加方括号,再在括号外的右上角注明阴离子所带的

电荷数.例如 S2 -的电子式为 [ ]2 - , OH -的电子式为.

②阳离子;对于简单阳离子,其电子式即为阳离子符号,如钠离子 Na +、镁离子

Mg2 +等.对于带正电荷的原子团,书写方法与阴离子类似,区别在于在方括号

右上角标上阳离子所带的正电荷数.如 NH4 +电子式为

(3) 离子化合物的电子式:在书写离子化合物的电子式时,每个离子都要分开

写.如 CaCl2 的电子式应为.

(4) 用电子式表示离子化合物的形成过程:先在左边写出构成该离子化合物的元素

原子的电子式,标上“→”,再在右边写出离子化合物的电子式.例如,用电子式表

示 MgBr2 、 Na2S 的形成过程:

说明 含有离子键的物质:①周期表中 I A 、 I A 族元素分别与Ⅵ A 、Ⅶ A 族元素

形成的盐;② I A 、Ⅱ A 族元素的氧化物;③铵盐,如 NH4Cl 、 NH4NO3 等;④

强碱,如 NaOH 、 KOH 等.

[ 共价键 ] 原子间通过共用电子对所形成的相互作用.由共价键形成的化合物叫做

共价化合物.说明 (1) 形成共价键的条件:原子里有未成对电子 ( 即原子最外层电子未达 8 电子

结构,其中 H 原子最外层未达 2 电子结构 ) .各种非金属元素原子均可以形成共价

键,但稀有气体元素原子因已达 8 电子 (He 为 2 电子 ) 稳定结构,故不能形成共价

键.

(2) 共价键形成的表示方法:

①用电子式表示.例如,用电子式表示 HCl 分子的形成过程:。

注意:

a .书写由原子构成的单质分子或共价化合物的电子式时,必须使分子中每个原子

都要达到 8 电子结构 (H 原子为 2 电子结构 ) .例如, HCl 分子的电子式为。

b .由原子构成的分子与由阴、阳离子构成的离子化合物的区别.如: HCl 、

NaCl

②用结构式表示.用短线 ( 一根短线表示一对共用电子对 ) 将分子中各原子连接,

以表示分子中所含原子的排列顺序和结合方式.如 H - C1 、 N ≡ N 、 O = C = O

等.

(3) 共价键的存在情况:共价键既存在于由原子直接构成的单质分子( H2 、 N2 )

或共价化合物分子( H2O 、 CH4 )中,也存在于多原子离子化合物中.含有共价

键的化合物不一定是共价化合物,也可能是离子化合物( NaOH 、 Na2O2 );同

时含有离子键和共价键的化合物必定是离子化合物,如 NaOH 、 NH4C1 等.

[ 化学键 ] 相邻的原子之间强烈的相互作用叫做化学键.

说明 (1) 化学键只存在于分子内直接相邻的原子之间,存在于分子之间的作用不属

于化学键.

(2) 离子键、共价键都属于化学键.

(3) 化学反应的过程,本质上就是旧化学键的断裂和新化学键的形成过程.

5 .非极性分子和极性分子

[ 非极性键 ] 同一元素原子间通过共用电子对形成的一类共价键.

如 C12 分子中的 Cl - C1 键即为非极性键.

说明 非极性键是非极性共价键的简称.非极性键只能存在于同种元素的原子之间.

[ 极性键 ] 不同种元素原子间通过共用电子对形成的一类共价键.

如 HCl 分子中的 H - C1 键属于极性键.

说明 极性键是极性共价键的简称.只要是不同种元素原子之间形成的共价键都属

于极性键.[ 非极性分子 ] 指整个分子的电荷分布均匀、分子结构对称的一类分子.

如 H2 、 O2 、 N2 等单质分子,以及 CO2 、 CH4 等均属于非极性分子.

[ 极性分子 ] 指分子中的电荷分布不均匀、结构不对称的一类分子.

如 H2O 、 H2S 、 HCl 分子等均属于极性分子.

[ 键的极性与分子的极性 ]

键的极性 分子的极性

分类 极性键和非极性键 极性分子和非极性分子

决定因素 是否由同种元素的原子形成 分子内电荷分布是否均匀,分子结构是否

对称

联系 ①以非极性键结合的双原子分子必为非极性分子,如 H2 、 C12 、 N2 等

②以极性键结合的双原子分子一定是极性分子,如 HCl 、 CO 等

③以极性键结合的多原子分子,究竟是极性分子还是非极性分子,

要根据该分子的具体分子结构然后确定.如 H2O 的分子结构为“∧”型,属于极性分

子;而 CO2 分子结构为直线形,属于非极性分子

说明 键有极性;分子不一定有极性

ABn 型化合物分子的极性的简易判断方法:

若 ABn 中 A 元素的化合价数等于 A 元素所在族的序数,则 ABn 为非极性分

子.例如, CO2 分子中 C 元素化合价为 +4 价, C 元素属于Ⅳ A 族,故 CO2 分子

为非极性分子; CCl4 分子中 C 元素化合价为 +4 价, C 元素属于Ⅳ A 族,故 CCl4

分子为非极性分子.

若 ABn 中 A 元素的化合价数不等于 A 元素所在族的序数,则 ABn 为极性分

子.例如, H2O 分子中 O 元素化合价为- 2 价, O 元素属于Ⅵ A 族,故 H2O 分子

为极性分子; NH3 分子中 N 元素化合价为- 3 价, N 元素属于Ⅴ A 族,故 NH3

分子为极性分子.

[ 分子间作用力 ] 指在物质的分子与分子之间存在着的作用力.

说明 (1) 荷兰物理学家范德华首先研究了分子间作用力,所以分子间作用力又叫范

德华力; (2) 分子间作用力要比化学键弱得多; (3) 化学键的强弱影响着物质的化

学性质;分子间作用力的大小对由分子构成的物质的物理性质如熔点、沸点、溶解

度等有影响.

高中化学知识点规律大全——硫和硫的化合物 环境保护

1 .氧族元素

[ 氧族元素 ] 包括氧( 8O) 、硫 (16S) 、硒 (34Se) 、碲 (52Te) 和放射性元素钋

(84Po) .氧族元素位于元素周期表中第Ⅵ A 族.

[ 氧族元素的原子结构 ]

(1) 相似性:①最外层电子数均为 6 个;②主要化合价:氧为- 2 价,硫、硒、碲

有- 2 、 +4 、 +6 价.

(2) 递变规律:按氧、硫、硒、碲的顺序,随着核电荷数的增加,电子层数增多,

原子半径增大,失电子能力增强,得电子能力减弱,非金属性减弱,金属性增强.

[ 氧族元素单质的物理性质 ]

O2 S Se Te

颜 色 无色 黄色 灰色 银白色

状 态 气体 固体 固体 固体

密度 逐渐增大

熔点、沸点 逐渐升高

导电性 不导电 不导电 半导体 导电

[ 氧族元素的化学性质 ]

O2 S Se Te

与 H2 化合的条件及氢化物的稳定性 反应条件 点燃 加热 高温 不能直接化合

氢化物

稳定性 H2O 很稳定 H2S 不稳定 H2Se 不稳定 H2Te

很不稳定

常见氧化物的化学式 SO2 、 SO3 SeO2 、 SeO3 TeO2 、 TeO3

高价含氧酸的化学式 H2SO4 H2SeO4 H2TeO4

与同周期Ⅳ A 、 VA 、Ⅶ A 族元素的非金属性强弱比较 同周期元素的非金属性:

Ⅳ A < VA <Ⅵ A <Ⅶ A

[ 同素异形体 ] 由同种元素形成的几种性质不同的单质,叫做这种元素的同素异形

体.例如, O2 与 O3 ,金刚石、石墨与 C60 ,白磷与红磷,均分别互为同素异形

体;硫元素也有多种同素异形体.注意 “同位素”与“同素异形体”的区别.同位素研究的对象是微观的原子,而同素

异形体研究的对象是宏观的单质.

[ 臭氧 ]

(1) 物理性质:在常温、常压下,臭氧是一种具有特殊臭味的淡蓝色气体,密度比

氧气大,也比氧气易溶于水.液态臭氧呈深蓝色,固态臭氧呈紫黑色.

(2) 化学性质:

①不稳定性. O3 在常温时能缓慢分解,高温时分解加速: 2O3 =3O2 .

②强氧化性.例如: a . Ag 、 Hg 等不活泼金属能与 O3 发生反应;

b . O3+2KI+H2O = O2+I2+2KOH . ( 此反应可用于 O3 的定量分析 )

(3) 用途:

①作漂白剂. O3 能使有机物的色素和染料褪色 ( 其褪色原理与 HClO 类似 ) .如

将 O3 通入石蕊试液中,溶液变为无色.②消毒剂.

(4) 制法: 3O22O3

(5) 臭氧在自然界中的存在及其与人类的关系.

①存在:自然界中含有臭氧,其中 90 %集中在距离地面 15 km ~ 50 km 的大气

平流层中 ( 即通常所说的臭氧层 ) .②与人类的关系:空气中的微量臭氧能刺激中

枢神经,加速血液循环,令人产生爽快和振奋的感觉.大气中的臭氧层能吸收太阳

的大部分紫外线,使地球上的生物免遭伤害.但氟氯烃 ( 商品名为氟利昂 ) 等气体

能破坏臭氧层.因此,应减少并逐步停止氟氯烃等的生产和使用,以保护臭氧层.

[ 过氧化氢 ]

(1) 物理性质:过氧化氢俗称双氧水,是一种无色粘稠液体.市售双氧水中 H2O2

的质量分数一般约为 30 %.

(2) 化学性质:

① H2O2 显弱酸性,是二元弱酸.其电离方程式可表示为:

H2O2H + + HO2 - HO2 - H + + O22 -

②不稳定性. H2O2 贮存时就会分解.在其水溶液中加入 MnO2 等催化剂,分解

速度大大加快.

2H2O2 2H2O+O2 ↑

说明 该反应原理是实验室制 O2 的常见方法之一.其发生装置为“固 + 液不加热”

型. ③ H2O2 既具有氧化性又具有还原性. H2O2 中的氧元素为- 1 价,介于 0 价与

- 2 价之间,当 H2O2 遇到强氧化剂时表现出还原性,而当遇到强还原剂时则表现

出氧化性.例如:

2KMnO4 + 5H2O2 + 3H2SO4 = K2SO4 + 2MnSO4 + 5O2 ↑ + 8H2O (H2O2 表现

还原性 )

H2O2 + 2KI = 2KOH + I2 (H2O2 表现氧化性 )

(3) 重要用途:

①医疗上广泛使用稀双氧水 ( 含 H2O2 的质量分数为 3 %或更小 ) 作为消毒杀菌

剂.

②工业上用 10 %的双氧水作漂白剂 ( 漂白毛、丝及羽毛等 ) 、脱氯剂.

③实验室制取氧气.

*[ 硫化氢 ]

(1) 物理性质:

①硫化氢是一种无色、有臭鸡蛋气味的气体,密度比空气大.

②硫化氢有剧毒,是一种大气污染物.在制取和使用 H2S 气体时,必须在密闭系

统如通风橱中进行.

③在常温、常压下, 1 体积水中能溶解 2.6 体积的硫化氢.

(2) 化学性质:

①不稳定性: H2S 受热 ( 隔绝空气 ) 能分解: H2S H2 + S

②可燃性: H2S 气体能在空气中燃烧:

2H2S + 3O2( 充足 ) 2H2O + 2SO2 2H2S + O2( 不足 ) 2H2O + 2S

( 发出淡蓝色火焰 ) ( 析出黄色固体 )

③强还原性: H2S 中的硫为- 2 价,处在最低价态,当遇到氧化剂时,硫被氧化

为 0 价、 +4 价或 +6 价.如:

H2S +X2 = 2HX + S ↓ (X = Cl 、 Br 、 I)

H2S + H2SO4( 浓 ) = S ↓ + SO2 + 2H2O

④水溶液显弱酸性.硫化氢的水溶液叫氢硫酸.氢硫酸是一种二元弱酸,具有酸

的通性.氢硫酸易挥发,当氢硫酸受热时,硫化氢会从溶液里逸出.

(3) 实验室制法:反应原理: FeS + 2H += Fe2 + + H2S ↑ ( 因 H2S 有强还原性,故不能用 HNO3 或

浓 H2SO4 制取 H2S 气体 ) 发生装置:固 + 液 → 气体型装置

干燥剂:用 P2O5 或 CaCl2( 不能用浓 H2SO4 或碱性干燥剂 ) .

2 .二氧化硫

[ 二氧化硫 ]

(1) 物理性质:

①二氧化硫是一种无色、有刺激性气味的气体,有毒,密度比空气大,易液化.

②易溶于水.在常温、常压下, 1 体积水能溶解 40 体积的 SO2 气体.

(2) 化学性质:

①二氧化硫与水反应: SO2 + H2OH2SO3( 该反应为可逆反应 )

说明 a .将装满 SO2 气体的试管倒立在滴有紫色石蕊试液的水槽中,一段时间后,

水充满试管,试管中的液体变为红色.

b .反应生成的 H2SO3 为二元中强酸,很不稳定,易分解: H2SO3H2O + SO2

②二氧化硫与氧气的反应: 2SO2 + O22SO3

说明 a .该反应是工业上制造硫酸的反应原理之一.

b .反应产物 SO3 是一种无色固体,熔点 (16.8 ℃ ) 和沸点 (44.8 ℃ ) 都很低. SO3

与 H2O 反应生成 H2SO4 ,同时放出大量的热: SO3 + H2O = H2SO4 + 热量

c . SO2 中的硫处于 +4 价,因此 SO2 既具有氧化性又具有还原性.例如:

SO2 + 2H2S = 3S + 2H2O

SO2 + X2 + 2H2O = 2HX + H2SO4 (X = C1 、 Br 、 I)

③二氧化硫的漂白性:

说明 a . SO2 和 C12( 或 O3 、 H2O2 、 Na2O2 等 ) 虽然都有漂白作用,但它们的

漂白原理和现象有不同的特点. Cl2 的漂白原理是因为 C12 与 H2O 反应生成的

HClO 具有强氧化性 (O3 、 H2O2 、 Na2O2 等与此类似 ) ,将有色物质 ( 如有色布

条、石蕊试液、品红试液等 ) 氧化成无色物质,褪色后不能再恢复到原来的颜色;

而 SO2 是因它与水反应生成的 H2SO3 跟品红化合生成了无色化合物,这种不稳定

的化合物在一定条件下 ( 如加热或久置 ) 褪色后又能恢复原来的颜色,用 SO2 漂白

过的草帽辫日久又渐渐变成黄色就是这个缘故.

b . SO2 能使橙色的溴水、黄绿色的氯水、紫红色的酸性 KMnO4 溶液等褪色,这

是因为 SO2 具有还原性的缘故,与 SO2 的漂白作用无关.c .利用 SO2 气体使品红溶液褪色、加热后红色又复现的性质,可用来检验 SO2 气

体的存在和鉴别 SO2 气体.

④二氧化硫能杀菌,可以用作食物和水果的防腐剂.

[ 二氧化硫的污染和治理 ]

(1)SO2 的污染:二氧化硫是污染大气的主要有害物质之一.它对人体的直接危害

是引起呼吸道疾病,严重时还会使人死亡.

(2) 酸雨的形成和危害:空气中的 SO2 在 O2 和 H2O 的作用下生成 H2SO3 、

H2SO4 。

2SO2 + O2 = 2SO3 SO2 + H2O = H2SO3 SO3 + H2O = H2SO4

下雨时,硫的氧化物 ( 和氮的氧化物 ) 以及所形成的硫酸 ( 和硝酸 ) 随雨水降下,

就形成酸雨.酸雨的 pH 小于 5.6( 正常雨水因溶解了 CO2 ,其 pH 约为 5.6) .

酸雨能使湖泊水质酸化,毒害鱼类和其他水生生物;使土壤酸化,破坏农田,损害

农作物和森林;酸雨还会腐蚀建筑物、工业设备和名胜古迹等.

(3) 治理:空气中的二氧化硫主要来自化石燃料 ( 煤和石油 ) 的燃烧.此外,还有

含硫矿石的冶炼和硫酸、磷肥、纸浆生产等产生的工业废气.消除大气污染的主要

方法之一是减少污染物的排放、例如,硫酸厂、化工厂、冶炼厂等的尾气在排放前

进行回收处理.

3 .硫酸

[ 硫酸 ]

(1) 物理性质:

①纯硫酸是一种无色透明、粘稠的油状液体.常用的浓硫酸的质量分数为 98.3 %,

密度为 1.84 g · cm - 3 ( 物质的量浓度为 18.4 mol · L - 1 ) ,沸点为 338 ℃ ( 因此,

浓硫酸属高沸点、难挥发性酸 ) .

②硫酸易溶于水,能以任意比与水混溶.浓硫酸溶于水时放出大量的热.因此,

在稀释浓硫酸时,要将浓硫酸缓慢倒入水中,并边加边搅拌.

(2) 化学性质:

①硫酸属于强电解质,是二元强酸,稀 H2SO4 具有酸的通性.例如:

Zn + 2H += Zn2 + + H2 ↑ ( 实验室制 H2 原理 )

Fe2O3 + 6H += 2Fe3 + + 3H2O( 除铁锈原理 )

H2SO4 + Ba(OH)2 = BaSO4 ↓ + 2H2O说明:浓硫酸中含水量很少,因此,浓 H2SO4 的电离程度很小,其中主要含

H2SO4 分子.

②吸水性:

a .浓 H2SO4 能吸收空气中的水分或各种物质中混有的游离态的 H2O ,形成一系

列稳定的化合物,如 H2SO4 · H2O 、 H2SO4 · 2H2O 和 H2SO4 · 4H2O 等.因此,

在实验室中浓 H2SO4 可用来作气体干燥剂,但不能干燥可与浓 H2SO4 反应的碱性

气体 ( 如 NH3 等 ) 和强还原性气体 ( 如 H2S 、 HI 、 HBr 等 ) .

b .因为浓 H2SO4 能吸收空气中的水分,所以实验室保存浓 H2SO4 时应注意密封,

以防止浓 H2SO4 吸收水分而变稀.

③脱水性:浓 H2SO4 能将有机物中的氢、氧元素按 2 ∶ 1 的组成比脱出生成水,

使有机物发生变化并生成黑色的炭.例如: C12H22O11( 蔗糖 ) 12C + 11H2O

又如将浓 H2SO4 滴到蓝色石蕊试纸上,试纸先变红色然后变黑色.

注意 浓 H2SO4 的脱水性及溶于水时放出大量热的性质,使浓 H2SO4 对有机物具

有强烈的腐蚀性.因此,如皮肤上不慎沾上浓 H2SO4 时,不能先用水冲洗,而先

要用干布迅速擦去,再用大量水冲洗.

④强氧化性:浓 H2SO4 中的硫为+ 6 价,处于硫元素的最高价态,因此浓 H2SO4

具有强氧化性.在反应中,浓 H2SO4 被还原为+ 4 价硫的化合物、单质硫或- 2

价硫的化合物.

a .常温下,浓 H2SO4 使 Fe 、 A1 发生钝化 (Fe 、 A1 难溶于冷的浓 H2SO4 中 ) .

说明 浓硫酸跟某些金属接触,使金属表面生成一薄层致密的氧化物保护膜,阻止

内部金属继续跟硫酸反应,这一现象叫做金属的钝化.钝化是化学变化.利用 Fe 、

A1 在冷的浓 H2SO4 中产生钝化的性质,可用铁或铝制容器装盛浓硫酸.

b .加热时,浓 H2SO4 能跟除 Pt 、 Au 外的金属发生反应.反应的通式可表示为:

金属 (Pt 、 Au 除外 ) + H2SO4( 浓 ) 硫酸盐 + SO2 ↑ + H2O

例如: 2H2SO4( 浓 ) + Cu CuSO4 + 2H2O + SO2 ↑

说明 Cu 与浓 H2SO4 的反应中,由于 H2SO4 中的硫元素的化合价只有部分改变,

因此浓硫酸同时表现出了氧化性和酸性.此外,随着反应的进行,浓 H2SO4 会渐

渐变稀,而稀 H2SO4 是不与 Cu 发生反应的.因此,反应物 Cu 和 H2SO4 都有可能

剩余,且实际产生的 SO2 气体的体积要比理论值小.

c .加热时,浓 H2SO4 能使非金属单质 C 、 S 、 P 等氧化.例如:

2H2SO4( 浓 ) + C CO2 ↑ + 2SO2 ↑ + 2H2O ( 在此反应中, H2SO4 只表现出氧化性 )

d .浓 H2SO4 能氧化某些具有还原性的物质.例如:H2SO4( 浓 ) + H2S = S + SO2 + 2H2O

2HBr + H2SO4( 浓 ) = Br2 + SO2 + 2H2O

8HI + H2SO4( 浓 ) = 4I2 + H2S + 4H2O

[ 氧化性酸与酸的氧化性 ] 所谓“氧化性酸”是指酸根部分易于获得电子的酸,如浓

H2SO4 、 HNO3 等,由于其中、易获得电子而表现出很强的氧化性;而盐酸、稀

硫酸等酸根部分不能或不易获得电子,所以它们是非氧化性酸.

在水溶液中任何酸都能不同程度地电离出 H +, H +在一定条件下可获得电子形

成 H2 .从这一观点看,酸都具有氧化性,但这是 H +表现出来的氧化性,它与氧

化性酸中的中心元素处于高价态易获得电子具有的氧化性是不同的.

区别“氧化性酸”与“酸的氧化性”这两个概念的关键如下:酸根部分易获得电子→有

氧化性→是氧化性酸

酸电离出的 H +→有氧化性→酸的氧化性→是非氧化性酸

[SO42 -的检验 ] 正确操作步骤:

待检溶液无现象产生白色沉淀,说明原溶液中含 SO42 —离子.

离子方程式: SO42 - + Ba2 += BaSO4 ↓

注意 ①加入盐酸的目的是将待检溶液中可能存在的、对检验 SO42 -有干扰作用

的 CO32 -、 SO32 -等阴离子通过反应而除去:

CO32 - + 2H += CO2 ↑ + H2O SO32 - + 2H += SO2 ↑ + H2O

AgCl 也是不溶于稀 HNO3 的白色沉淀.向待检液中加入盐酸时,若有白色沉淀产

生,需进行过滤才能继续下一步操作.

②在加入 BaCl2 或 Ba(NO3)2 溶液前,不能用 HNO3 酸化待检溶液.因为若待检溶

液中含有 SO32 -时,会被 HNO3 氧化为 SO42 -,也能产生同样的现象.

*[ 硫酸钙和硫酸钡 ]

硫酸钙 (CaSO4) 硫酸钡 (BaSO4)

自然界存在的形式 石膏 (CaSO4 · 2H2O) 重晶石

性 质 ①白色固体,微溶于水② 2(CaSO4 · 2H2O) 2CaSO4 · H2O( 熟石膏 )+3H2O ,

熟石膏与水混合后很快凝固,重新变成生石膏 不溶于水,也不溶于酸.不易被 X

-射线透过

用 途 ①制作各种模型和医疗用的石膏绷带②调节水泥的凝固速度 ①作 X -射线透视肠胃的内服药剂 ( 俗称“钡餐” ) ②作白

色颜料

4 .环境保护

*[ 大气污染及其防治 ] 当大气中某些有毒物质的含量超过正常值或大气的自净能

力时,就发生了大气污染.大气污染既危害人体健康又影响动植物的生长,同时会

破坏建筑材料,严重时会改变地球的气候.例如,使气候变暖、破坏臭氧层,形成

酸雨等.大气污染的防治要采取综合措施.主要包括:调整能源结构,合理规划工

业发展和城市建设布局,综合运用各种防治污染的技术措施,制定大气质量标准、

加强大气质量监测,采取生物措施、改善生态环境,植树造林、充分利用环境的自

净能力等.

*[ 空气质量日报、周报 ] 从 1997 年 5 月起,我国有几十座城市先后开始定期发布

城市空气质量周报.在此基础上,又有许多城市开始发布空气质量日报.空气质量

日报的主要内容包括“空气污染指数”、“空气质量级别”、“首要污染物”等.空气污

染指数 ( 简称 APT) 就是将常规监测的几种空气污染物的浓度简化为单一的数值形

式,并分级表示空气污染程度和空气质量状况.这种方式适用于表示城市的短期空

气质量状况和变化趋势.根据我国空气污染的特点和污染防治重点,目前计入空气

污染指数的项目暂定为:二氧化硫、二氧化氮和可吸入颗粒等。

空气质量分级标准是:空气污染指数 50 点对应的污染物浓度为空气质量日均值的

一级标准,空气质量优; 100 点对应二级标准,空气质量良好; 200 点对应三级

标准,空气轻度污染; 300 点对应四级标准,空气质量中度污染;超过 300 点则

为五级标准,空气质量属重度污染.

*[ 水污染及其防治 ] 由于人类活动排放的污染物,使水的物理、化学性质发生变

化或生物群落组成发生变化,从而降低了水的使用价值的现象,叫做水污染.水污

染的主要物质有重金属、酸、碱、盐等无机污染物,耗氧物质,植物营养物质,石

油和难降解有机物等.此外,对水体造成污染的还有病原体污染、放射性污染、悬

浮固体物污染、热污染等.日常使用的合成洗涤剂也会对水体造成污染.防治水污

染的根本措施是控制污水的任意排放.污水要经过处理,达到国家规定的排放标准

后再排放.污水处理的方法一般可归纳为物理法、生物法和化学法.各种方法都各

有特点和适用条件,往往需要配合使用.

与 S 、 X2 等非金属的反应 Mg + SMgS

Mg + C12MgCl2 2Al + 3SA12S3

2Al + 3Cl22AlCl3

与酸的反应 非氧化性酸 例 Mg + 2H + = Mg2 + +H2 ↑ 例 2A1 + 6H + =

2A13 + +3 H2 ↑

氧化性酸 例 4Mg + 10HNO3( 极稀 ) = 4Mg(NO3)2 + N2O ↑ + 5H2O 铝在冷的浓

HNO3 、浓 H2SO4 中因发生钝化而难溶 与碱的反应 不反应 2A1 + 2NaOH + 2H2O = 2NaAlO2 + 3H2 ↑

与氧化物的反应 2Mg + CO2 2MgO + C

( 金属镁能在 CO2 气体中燃烧 ) 2A1 + Fe2O3 2Fe + A12O3

[ 铝热反应 ]

说明 铝与比铝不活泼的金属氧化物 ( 如 CuO 等 ) 都可以发生铝热反应

[ 铝的重要化合物 ]

氧化铝 (A12O3) 氢氧化铝 [A1(OH)3] 硫酸铝钾 [KAl(SO4)2]

物理性质 白色固体,熔点高,难溶于水 不溶于水的白色胶状固体;能凝聚水中

的悬浮物,有吸附色素的性能 硫酸铝钾晶体 [KAl(SO4)2 · 12H2O] 俗称明矾.明

矾是无色晶体,易溶于水

所属类别 两性氧化物 两性氢氧化物 复盐 ( 由两种不同金属离子和一种酸根离子

组成 )

电离方程式 在水中不能电离 A13 + +3OH - A1(OH)3AlO2 - +H + +H2O

KAl(SO4)2 = K + +A13 + +2SO42 -

化学性质 既能与酸反应生成铝盐,又能与碱反应生成偏铝酸盐: Al2O3 + 6H +=

2A13 + + 3H2O , Al2O3 + 2OH -= 2 AlO2 - + H2O ①既能溶于酸,又能溶于

强碱中: A1(OH)3 + 3H += A13 + + 3H2O , A1(OH)3 + OH -= 2AlO2 - +

2H2O

②受热分解:

2A1(OH)3 Al2O3 + 3H2O ①同时兼有 K +、 A13 +、 SO42 -三种离子的性质②

水溶液因 A1 3 +水解而显酸性:

A13 + +3H2OA1(OH)3 + 3H +

制 法 2A1(OH)3 Al2O3 + 3H2O 可溶性铝盐与氨水反应: A13 + + 3NH3 · H2O

A1(OH)3 ↓ + 3NH4 +

用 途 ①作冶炼铝的原料②用于制耐火坩埚、耐火管、耐高温仪器 制取氧化铝

作净水剂

[ 合金 ]

(1) 合金的概念:由两种或两种以上的金属 ( 或金属跟非金属 ) 熔合在一起而成的

具有金属特性的物质.(2) 合金的性质:①合金的硬度比它的各成分金属的硬度大;②合金的熔点比它的

各成分金属的熔点低.

*[ 硬水及其软化 ]

(1) 基本概念.

①硬水和软水:

硬水:含有较多的 Ca2 +和 Mg2 +的水.

软水:不含或只含少量 Ca2 +和 Mg2 +的水.

②暂时硬度和永久硬度:

暂时硬度:由碳酸氢钙或碳酸氢镁所引起的水的硬度.

永久硬度:由钙和镁的硫酸盐或氯化物等引起的水的硬度.

③暂时硬水和永久硬水:

暂时硬水:含有暂时硬度的水.

永久硬水:含有永久硬度的水.

(2) 硬水的软化方法:

①煮沸法.这种方法只适用于除去暂时硬度,有关反应的化学方程式为:

Ca(HCO3)2CaCO3 ↓ +CO2 ↑ +H2O

Mg(HCO3)2MgCO3 ↓ +CO2 ↑ +H2O

MgCO3 + H2OMg(OH)2 ↓ +CO2 ↑

②离子交换法.这种方法可同时除去暂时硬度和永久硬度.

③药剂软化法.常用的药剂法有石灰——纯碱法和磷酸钠法.

(3) 天然水的硬度:天然水同时有暂时硬度和永久硬度,一般所说的硬度是指两种

硬度之和.

(4) 硬水的危害:

①长期饮用硬度过高或过低的水,均不利于身体健康.

②用硬水洗涤衣物,浪费肥皂,也不易洗净.

③锅炉用水硬度过高,易形成锅垢 [ 注:锅垢的主要成分为 CaCO3 和 Mg(OH)2] ,

不仅浪费燃料,还会引起爆炸事故.

3 .铁和铁的化合物[ 铁 ]

(1) 铁在地壳中的含量:铁在地壳中的含量居第四位,仅次于氧、硅和铝.

(2) 铁元素的原子结构:铁的原子序数为 26 ,位于元素周期表第四周期Ⅶ族,属

过渡元素.铁原子的最外层电子数为 2 个,可失去 2 个或 3 个电子而显 +2 价或 +3

价,但 +3 价的化合物较稳定.

(3) 铁的化学性质:

①与非金属反应:

3Fe + 2O2Fe3O4

2Fe + 3C122FeCl3

说明 铁丝在氯气中燃烧时,生成棕黄色的烟,加水振荡后,溶液显黄色.

Fe + SFeS

说明 铁跟氯气、硫反应时,分别生成 +2 价和 +3 价的铁,说明氧化性:氯气>硫.

②与水反应:

a .在常温下,在水和空气中的 O2 、 CO2 等的共同作用下, Fe 易被腐蚀 ( 铁生

锈 ) .

b .在高温下,铁能与水蒸气反应生成 H2 : 3Fe + 4H2O(g) Fe3O4 + 4H2

③与酸反应:

a .与非氧化性酸 ( 如稀盐酸、稀 H2SO4 等 ) 的反应.例如: Fe + 2H + = Fe2

+ + H2 ↑

b .铁遇到冷的浓 H2SO4 、浓 HNO3 时,产生钝化现象,因此金属铁难溶于冷的

浓 H2SO4 或浓 HNO3 中.

④与比铁的活动性弱的金属的盐溶液发生置换反应.例如: Fe + Cu2 + = Fe2

+ + Cu

归纳:铁的化学性质及在反应后的生成物中显 +2 价或 +3 价的规律如下;

[ 铁的氧化物的比较 ]

铁的氧化物 氧化亚铁 氧化铁 四氧化三铁

俗 称 铁红 磁性氧化铁

化学式 FeO Fe2O3 Fe3O4

铁的价态 +2 价 +3 价 +2 价和 +3 价 颜色、状态 黑色粉末 红棕色粉末 黑色晶体

水溶性 都不溶于水

化学性质 ①在空气中加热时,被迅速氧化; 6FeO + O2 2Fe3O4 ②与盐酸等反应:

FeO + 2H += Fe2 + + H2O ①与盐酸等反应: Fe2O3 + 6H += 2Fe3 + + 3H2O

②在高温时,被 CO 、 C 、 A1 等还原: Fe2O3 + 3CO 2Fe + 3CO2 兼有 FeO 和

Fe2O3 的性质,如 Fe3O4 + 8H += 2Fe3 + + Fe2 + + 4H2O

[ 氢氧化亚铁和氢氧化铁的比较 ]

Fe(OH)2 Fe(OH)3

颜色、状态 在水中为白色絮状沉淀 在水中为红褐色絮状沉淀

水溶性 难溶于水 难溶于水

制 法 可溶性亚铁盐与强碱溶液或氨水反应:

注:制取时,为防止 F e2 +被氧化,应将装有 NaOH 溶液的滴管插入 FeSO4 溶液

的液面下

可溶性铁盐与强碱溶液、氨水反应:

化学性质 ①极易被氧化:

沉淀颜色变化:白色→灰绿色→红褐色

②与非氧化性酸如盐酸等中和:

①受热分解;

固体颜色变化:红褐色→红棕色

②与酸发生中和反应:

[Fe3 +和 Fe2 +的相互转化 ]

例如: 2Fe3 + + Fe = 3Fe2 +

应用:①除去亚铁盐 ( 含 Fe2 + ) 溶液中混有的 Fe3 +;②亚铁盐很容易被空气

中的 O2 氧化成铁盐,为防止氧化,可向亚铁盐溶液中加入一定量的铁屑.

例如: 2Fe2 + + Cl2 = 2Fe3 + + 2Cl -

应用:氯化铁溶液中混有氯化亚铁时,可向溶液中通入足量氯气或滴加新制的氯水,

除去 Fe2 +离子.

Fe2 + Fe3 +[Fe2 +、 Fe3 +的检验 ]

(1)Fe2 +的检验方法:

①含有 Fe2 +的溶液呈浅绿色;

②向待检液中滴加 NaOH 溶液或氨水,产生白色絮状沉淀,露置在空气中一段时

间后,沉淀变为灰绿色,最后变为红褐色,说明含 Fe2 +.

③向待检液中先滴加 KSCN 溶液,无变化,再滴加新制的氯水,溶液显红色,说

明含 Fe2 +.有关的离子方程式为:

2Fe2 + + Cl2 = 2Fe3 + + 2Cl - Fe3 + + 3SCN - = Fe(SCN)3

(2)Fe3 +的检验方法:

①含有 Fe3 +的溶液呈黄色;

②向待检液中滴加 NaOH 溶液或氨水,产生红褐色沉淀,说明含 Fe3 +.

③向待检液中滴加 KSCN 溶液,溶液呈血红色,说明含 Fe3 +.

进行铁及其化合物的计算时应注意的事项:

(1) 铁元素有变价特点,要正确判断产物;

(2) 铁及其化合物可能参加多个反应,要正确选择反应物及反应的化学方程式;

(3) 反应中生成的铁化合物又可能与过量的铁反应,因此要仔细分析铁及其化合物

在反应中是过量、适量,还是不足量;

(4) 当根据化学方程式或离子方程式计算时,找出已知量与未知量的关系,列出方

程式或方程式组;

(5) 经常用到差量法、守恒法.

4 .金属的冶炼

[ 金属的冶炼 ]

(1) 从矿石中提取金属的一般步骤有三步:①矿石的富集.除去杂质,提高矿石中

有用成分的含量;②冶炼.利用氧化还原反应原理,在一定条件下,用还原剂将

金属矿石中的金属离子还原成金属单质;⑧精炼.采用一定的方法,提炼纯金属.

(2) 冶炼金属的实质:用还原的方法,使金属化合物中的金属离子得到电子变成金

属原子.

(3) 金属冶炼的一般方法:①加热法.适用于冶炼在金属活动顺序表中,位于氢之后的金属 ( 如 Hg 、 Ag

等 ) .例如:

2HgO2Hg + O2 ↑ HgS + O2Hg + SO2 ↑

2Ag2O4Ag + O2 ↑ 2AgNO32Ag + 2NO2 ↑ + O2 ↑

②热还原法.适用于冶炼金属活动顺序表中 Zn 、 Fe 、 Sn 、 Pb 等中等活泼的金

属.常用的还原剂有 C 、 CO 、 H2 、 Al 等.例如:

Fe2O3 + 3CO2Fe + 3CO2( 炼铁 ) ZnO + CZn + CO ↑ ( 伴生 CO2)

WO3 + 3H2W + 3H2O Cr2O3 + 2Al2Cr + A12O3( 制高熔点的金属 )

⑧熔融电解法.适用于冶炼活动性强的金属如 K 、 Ca 、 Na 、 Mg 、 A1 等活泼的

金属,通过电解其熔融盐或氧化物的方法来制得.例如:

2A12O3 4Al + 3O2 ↑ 2NaCl 2Na + C12 ↑

④湿法冶金 ( 又叫水法冶金 ) .利用在溶液中发生的化学反应 ( 如置换、氧化还原、

中和、水解等 ) ,对原料中的金属进行提取和分离的冶金过程.湿法冶金可用于提

取 Zn 、 U( 铀 ) 及稀土金属等.

[ 金属的回收 ] 地球上的金属矿产资源是有限的,而且是不能再生的.随着人们的

不断开发利用,矿产资源将会日渐减少.金属制品在使用过程中会被腐蚀或损坏,

同时由于生产的发展,新的产品要不断替代旧的产品,因而每年就有大量废旧金属

产生.废

旧金属是一种固体废弃物,会污染环境.要解决以上两个问题,最好的方法是把废

旧金属作为一种资源,加以回收利用.这样做,既减少了垃圾量,防止污染环境,

又缓解了资源短缺的矛盾.回收的废旧金属,大部分可以重新制成金属或它们的化

合物再用.

*[ 金属陶瓷和超导材料 ]

(1) 金属陶瓷.金属陶瓷是由陶瓷和粘结金属组成的非均质的复合材料.陶瓷主要

是 Al2O3 、 ZrO2 等耐高温氧化物等,粘结金属主要是 Cr 、 Mo 、 W 、 Ti 等高熔

点金属.将陶瓷和粘结金属研磨,混合均匀,成型后在不活泼气氛中烧结,就可制

得金属陶瓷.

金属陶瓷兼有金属和陶瓷的优点,其密度小,硬度大,耐磨,导热性好,不会因

为骤冷或骤热而脆裂.另外,在金属表面涂一层气密性好、熔点高、传热性很差的

陶瓷涂层,能够防止金属或合金在高温下被氧化或腐蚀.

金属陶瓷广泛地应用于火箭、导弹、超音速飞机的外壳、燃烧室的火焰喷口等处.(2) 超导材料.当电流通过金属 ( 或合金 ) 时,金属会发热,这是由于金属内部存

在电阻,它阻碍电流通过.用金属导线输送电流时,由于有电阻存在,会白白消耗

大量电能.金属材料的电阻通常随温度的降低而减小.

科学研究发现,当汞冷却到低于 4.2 K 时,电阻突然消失,导电性几乎是无限大

的,当外加磁场接近固态汞随之又撤去后,电磁感应产生的电流会在金属汞内部长

久地流动而不会衰减,这种现象称为超导现象.具有超导性质的物质称为超导

体.超导体电阻突然消失的温度称为临界温度 (Tc) .在临界温度以下时,超导体

的电阻为 0 ,也就是电流在超导体中通过时没有任何损失.

超导材料大致分为纯金属、合金和化合物三类.具有最高临界温度的纯金属是镧,

Tc = 12.5 K .合金型目前主要有铌—钛合金, Tc = 9.5 K .化合物型主要有铌三

锡 (Nb3Sn) , Tc = 18.3K ;钒三镓 (V3Ga) , Tc = 16.5 K 等.

超导材料可制成大功率发电机、磁流发电机、超导储能器、超导电缆、超导磁悬

浮列车等.用超导材料制成的装置,具有体积小、使用性能高、成本低等优点.

5 .原电池的原理及其应用

[ 原电池 ]

(1) 原电池的概念:把化学能转变为电能的装置叫做原电池.

(2) 构成原电池的条件:

①有相互连接或,接触的两个电极.在两个电极中,其中一个电极的材料为较活

泼的金属;另一个电极的材料为较不活泼的金属或金属氧化物导体或石墨.

②两个电极要同时与电解质溶液相接触并形成回路.

③作负极的较活泼金属能与电解质溶液发生氧化还原反应,而较不活泼的金属不

能与电解质溶液反应.

(3) 原电池原理:

较活泼金属:作负极电子流出发生氧化反应 ( 电极本身失电子后而溶解 )

较不活泼金属、金属氧化物或石墨:作正极电子流入发生还原反应 ( 溶液中的阳离

子得电子后析出 )

电流方向:正极导线负极

(4) 原电池原理的应用:制作各种电池,如干电池、蓄电池、充电电池、高能电池

等.

[ 化学电源 ](1) 实用电源一般应具有的特点:能产生稳定而具有较高电压的电流;安全、耐用

且便于携带;能够适用于特殊用途;便于回收处理,不污染环境或对环境产生影响

较小.

(2) 几种常见的电池和新型电池:

构 造 性 能 主要用途

池 锌—锰干电池 插在电池中央的石墨作正极,顶端有一铜帽;在石墨棒的周围

填满二氧化锰和炭黑的混合物,并用离子可以通过的长纤维作隔膜;隔膜外是调成

糊状的氯化铵,作为电解质溶液;最外面是由锌筒制成的干电池外壳,作为负极;

电池顶部用蜡和火漆封口 电量小,在放电过程中容易发生气涨或漏液 手电筒中

用作照明

碱性锌—锰电池 电解液由原来的中性变为离子导电性更好的碱性,负极由锌片

改为锌粉 反应面积成倍增长.容量和放电时间比普通锌—锰电池增加几倍

池 铅蓄电池 用含锑 5 %~ 8 %的铅锑合金铸成格板,在格板上分别填充 PbO2

和 Pb 作正极和负极,二者交替排列而成.在电极之间充有密度为 1.25 g · cm -

3 ~ 1.28 g · cm - 3 的 H2SO4 溶液 电压稳定,使用方便,安全、可靠,可循环

使用 用于汽车、摩托车等的动力

镍—镉可充电电池 用镉 (Cd) 为电池的负极, NiO(OH) 为电池正极,碱性溶液为

电解液 广泛用于电话机、收录机等

银—锌蓄电池 用锌为负极,氧化银 (Ag2O) 为正极 体积小、质量轻 用于人造地

球卫星,宇宙火箭、空间电视转播站等

新型燃料电池 氢氧燃料电池 氢气、氧气、甲烷、煤气、空气、氯气等均可作为

燃料电池的原料 能量转化率高、可持续使用;燃烧产物为水,不污染环境

铝—空气燃料电池 用铝为电池负极,以氯化钠等盐溶液为电解液,靠空气中的

氧气使铝不断氧化而产生电流 体积小,能量大,使用方便,耗能少 代替汽油作

为汽车的动力,用于收音机、照明电源、野营炊具、野外作业工具等

锂电池 用密度最小的金属锂作电池的负极 质量轻、工作效率高、贮存寿命长 用

于电脑、照相机、手表、心脏起搏器,以及作为火箭、导弹等的动力

[ 金属的电化学腐蚀 ](1) 金属腐蚀的概念:金属腐蚀是指金属或合金与周围接触到的气体或液体进行化

学反应而腐蚀损耗的过程.

(2) 金属腐蚀的本质:金属原子失去电子变成阳离子的过程.也就是说,金属在腐

蚀过程中,发生了氧化还原反应.

(3) 两种金属腐蚀的比较:

化学腐蚀 电化学腐蚀

产生原因 金属跟接触到的物质 ( 如 O2 、 Cl2 、 SO2 等 ) 直接发生化学反应 不纯

金属或合金与电解质溶液接触

特 点 无电流产生.为原子之间的氧化还原反应 形成无数微小的原电池,有微弱

电流产生.为原子与离子之间的氧化还原反应

结 果 金属失去电子被氧化而腐蚀 较活泼金属失去电子被氧化而腐蚀

举 例 铁跟氯气直接反应而腐蚀;钢管被原油中的含硫化合物腐蚀 钢铁的电化学

腐蚀:

负极 (Fe) : 2Fe - 4e -= 2Fe2 +

正极 (C) : 2H2O + O2 + 4e -= 4OH -.

说 明 在化学腐蚀和电化学腐蚀中,电化学腐蚀是造成钢铁腐蚀的主要原因

(4) 金属的防护方法:

①选用不同的金属或非金属制成合金 ( 如不锈钢 ) .

②采用喷漆、涂油脂、电镀、喷镀或表面钝化等方法使金属与介质隔离.

③电化学保护法.

高中化学知识点规律大全

——烃

1 .烃的分类

2 .基本概念

[ 有机物 ] 含碳元素的化合物称为有机化合物,简称有机物.

说明 有机物一定是含有碳元素的化合物 ( 此外,还含有 H 、 O 、 N 、 S 、 P 等 ) ,

但含有碳元素的化合物却不一定是有机物,如 CO 、 CO2 、 H2CO3 、碳酸盐、

CaC2 等少数物质,它们的组成和性质跟无机物很相近,一般把它们作为无机物. 有机物种类繁多的原因是碳原子最外层有 4 个电子,不仅可与其他原子形成四个

共价键,而且碳原子与碳原子之间也能以共价键 ( 碳碳单键、碳碳双键、碳碳叁

键 ) 形成含碳原子数不同、分子结构不同的碳链或环状化合物.

[ 烃 ] 又称为碳氢化合物,指仅由碳和氢两种元素组成的一大类化合物.根据结构

的不同,烃可分为烷烃、烯烃、炔烃、芳香烃等.

[ 结构式 ] 用一根短线代表一对共用电子对,并将分子中各原子用短线连接起来,

以表示分子中各原子的连接次序和方式的式子.如甲烷的结构式为:

乙烯的结构式为:

H - C - H H H H - C = C - H

[ 结构简式 ] 将有机物分子的结构式中的“ C — C ”键和“ C — H ”键省略不写所得的

一种简式.如丙烷的结构简式为 CH3CH2CH3 ,乙烯的结构简式

为 CH2 = CH2 ,苯的结构简式为 等.

[ 烷烃 ] 又称为饱和链烃.指分子中碳原子与碳原子之间都以 C — C 单键 ( 即 1 个

共用电子对 ) 结合成链状,且碳原子剩余的价键全部跟氢原子相结合的一类

烃.“烷”即饱和的意思. CH4 、 CH3CH3 、 CH3CH2CH3 ……等都属于烷烃.烷烃

中最简单的是甲烷.

[ 同系物 ] 结构相似,在分子组成上相差一个或若干个 CH2 原子团的有机物,互称

同系物.

说明 判断有机物互为同系物的两个要点;①必须结构相似,即必须是同一类物

质.例如,碳原子数不同的所有的烷烃 ( 或单烯烃、炔烃、苯的同系物 ) 均互为同

系物.由于同系物必须是同一类物质,则同系物一定具有相同的分子式通式,但分

子式通式相同的有机物不一定是同系物.由于同系物的结构相似,因此它们的化学

性质也相似.②在分子组成上相差一个或若干个 CH2 原子团.由于同系物在分子

组成上相差 CH2 原子团的倍数,因此同系物的分子式不同.

由同系物构成的一系列物质叫做同系列 ( 类似数学上的数列 ) ,烷烃、烯烃、炔烃、

苯的同系物等各自为一个同系列.在同系列中,分子式呈一定规律变化,可以用一

个通式表示.

[ 取代反应 ] 有机物分子里的原子或原子团被其他原子或原子团所代替的反应,叫

做取代反应.根据有机物分子里的原子或原子团被不同的原子或原子团 [ 如-

X( 卤原子 ) 、- NO2( 硝基 ) ,- SO3H( 磺酸基 ) ,等等 ] 所代替,取代反应又分

为卤代反应、硝化反应、磺化反应,等等.

①卤代反应.如:

CH4 + C12 → CH3C1 + HCl( 反应连续进行,可进一步生成 CH2C12 、 CHCl3 、

CCl4)( 一 NO2 叫硝基 )

②硝化反应.如:

③磺化反应.如: ( 一 SO3H 叫磺酸基 )

[ 同分异构现象与同分异构体 ]

化合物具有相同的分子式,但具有不同的结构式的现象,叫做同分异构现象.具有

同分异构现象的化合物互为同分异构体.

说明 同分异构体的特点:①分子式相同,相对分子质量相同,分子式的通式相

同.但相对分子质量相同的化合物不一定是同分异构体,因为相对分子质量相同时

分子式不一定相同.同分异构体的最简式相同,但最简式相同的化合物不一定是同

分异构体,因为最简式相同时分子式不一定相同.②结构不同,即分子中原子的

连接方式不同.同分异构体可以是同一类物质,也可以是不同类物质.当为同一类

物质时,化学性质相似,而物理性质不同;当为不同类物质时,化学性质不同,物

理性质也不同.

[ 烃基 ] 烃分子失去一个或几个氢原子后剩余的部分.烃基的通式用“ R -”表

示.例如:- CH3( 甲基 ) 、- CH2CH3( 乙基 ) 、- CH = CH2( 乙烯基 ) 、-

C6H5 或 f 今胃 ( 苯基 ) 等.烷基是烷烃分子失去一个氢原子后剩余的原子团,其

通式为- CnH2n+1 .烃基是含有未成对电子的原子团,例如,

- CH3 的电子式为

1 mol - CH3 中含有 9 mol 电子.

[ 不饱和烃 ] 分子里含有碳碳双键 (C = C) 或碳碳叁键 (C ≡ C) 的烃,双键碳原子或

叁键碳原子所结合的氢原子数少于烷烃分子中的氢原子数,还可再结合其他的原子

或原子团.不饱和烃包括烯烃、炔烃等.

[ 加成反应 ] 有机物分子里的双键或叁键两端的碳原子与其他原子或原子团直接结

合生成新的化合物的反应,叫做加成反应.

说明 加成反应是具有不饱和键的物质的特征反应.不饱和键上的两个碳原子称为

不饱和碳原子,加成反应总是发生在两个不饱和碳原子上.加成反应能使有机分子

中的不饱和碳原子变成饱和碳原子.烯烃、炔烃、苯及其同系物均可发生加成反应,

例如:

(1 , 2 -二溴乙烷 )

(1 , 2 -二溴乙烯 )

(1 , 1 , 2 , 2 -四溴乙烷 )[ 聚合反应 ] 聚合反应又叫做加聚反应.是由相对分子质量小的化合物分子 ( 即单

体 ) 互相结合成相对分子质量大的高分子 ( 即高分子化合物 ) 的反应.

说明 加聚反应是合成高分子化合物的重要反应之一.能发生加聚反应的物质一定

要有不饱和键.加聚反应的原理是不饱和键打开后相互连接成很长的链.例如:

( 聚乙烯 )

( 聚氯乙烯 )

[ 烯烃 ] 分子中含有碳碳双键 (C = C 键 ) 的一类不饱和烃.根据烃分子中所含碳碳

双键数的不同,烯烃又可分为单烯烃 ( 含一个 C = C 键 ) 、二烯烃 ( 含两个 C = C

键 ) 等.烯烃中最简单的是乙烯.

[ 炔烃 ] 分子中含有碳碳叁键 (C ≡ C 键 ) 的一类不饱和烃.炔烃中最简单的是乙炔.

[ 芳香烃 ] 分子中含有一个或多个苯环的碳氢化合物,叫做芳香烃,简称芳烃.苯

是最简单、最基本的芳烃.

[ 石油的分馏 ] 是指用蒸发和冷凝的方法把石油分成不同沸点范围的蒸馏产物的过

程.

说明 ①石油的分馏是物理变化;②石油的分馏分为常压分馏和减压分馏两

种.常压分馏是指在常压 (1.0l × l05Pa) 时进行的分馏,主要原料是原油,主要产

品有溶剂油、汽油、煤油、柴油和重油.减压分馏是利用“压强越小,物质的沸点

越低”的原理,使重油在低于常压下的沸点就可以沸腾,而对其进一步进行分馏.

[ 石油的裂化和裂解 ] 裂化是在一定条件下,将相对分子质量较大、沸点较高的烃

断裂为相对分子质量较小、沸点较低的烃的过程.在催化剂作用下的裂化,又叫做

催化裂化.例如:

C16H34 C8H18 + C8H16

裂解是采用比裂化更高的温度,使石油分馏产品中的长链烃断裂成乙烯、丙烯等短

链烃的加工过程.裂解是一种深度裂化,裂解气的主要产品是乙烯.

[ 煤的干馏 ] 又叫做煤的焦化.是将煤隔绝空气加强热使其分解的过程.

说明 ①煤的干馏是化学变化;

②煤干馏的主要产品有焦炭、煤焦油、焦炉气 ( 主要成分为氢气、甲烷等 ) 、粗氨

水和粗苯.

[ 煤的气化和液化 ]

(1) 煤的气化.

①概念:把煤中的有机物转化为可燃性气体的过程.②主要化学反应: C(s) + O2(g) CO2(g)

⑧煤气的成分、热值和用途比较:

煤气种类 低热值气 中热值气 高热值气 ( 合成天然气 )

生成条件 碳在空气中燃烧 碳在氧气中燃烧 CO + 3H2 C H4 + H2O

成 分 CO 、 H2 、相当量的 N2 CO 、 H2 、少量 CH4 主要是 CH4

特点和用途 热值较低.用作冶金、机械工业的燃料气 热值较高,可短距离输

送.可用作居民使用的煤气,也可用作合成氨、甲醇的原料等 热值很高,可远距

离输送

(2) 煤的液化.

①概念:把煤转化成液体燃料的过程.

②煤的液化的途径:

a .直接液化:把煤与适当的溶剂混合后,在高温、高压下 ( 有时还使用催化剂 ) ,

使煤与氢气作用生成液体燃料.

b .间接液化:如图 3 — 11 — 1 所示.

3 .烷烃、烯烃的命名

[ 烷烃的命名 ]

①习惯命名法.当烷烃分子中所含碳原子数不多时,可用习惯命名法.其命名步

骤要点如下: a .数出烷烃分子中碳原子的总数.碳原子总数在 10 以内的,从

1 ~ 10 依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸来表示. b .当烷烃分

子中无支链时,用“正”表示,如: CH3CH2CH2CH3 叫正丁烷;当烷烃分子中含

“ CHa–CH– ”结构时,用

②系统命名法.

步骤: a .选主链.选择支链最多且含碳原子数最多的碳链作主链,并称“某烷”;

b .定起点.选择离最简单的支链 ( 即含碳原子数最少 ) 最近的一端作为主链的起

点,并使取代基的编号数之和最小; c .取代基,写在前,注位置,短线连;

d .相同取代基要合并.不同取代基,不论其位次大小如何,简单在前,复杂在后.

[ 烯烃的命名 ] 在给烯烃命名时,要始终注意到 C = C 键所在的位置:①选择含有

C = C 在内的最长碳链作主链 ( 注:此时主链上含碳原子数不一定最多 ) ;②从离

C = C 键最近的一端开始给主链碳原子编号;⑧在“某烯”字样前用较小的阿拉伯数

字“ 1 、 2 …”给烯烃编号.其余与烷烃的命名方法相同.例如:

CH3–CHz–‘<3–<3H2–K3H3, l

CHc

其名称为 2 —乙基— l —丁烯.

4 .同分异构体的有关知识

[ 同分异构体的熔点、沸点高低的规律 ]

①当为脂肪烃的同分异构体时,支链越多 ( 少 ) ,沸点越低 ( 高 ) ;②当为含两个

侧链的苯的同系物时,侧链相隔越远 ( 近 ) ,沸点越高 ( 低 ) .

[ 同分异构体的种类 ]

①有机物类别异构,???如烷烃与烯烃为两类不同的有机物;②碳链异构 ( 苯

环上有邻、间、对位三种异构 ) ;③官能团位置异构 ( 在“烃的衍生物”中将学习

到 ) .

[ 同分异构体的书写规律 ]

①同分异构体的书写规律:要准确、完全地写出同分异构体,一般按以下顺序规

律进行书写:类别异构 + 碳链异构一位置异构.

②碳链异构 ( 烷烃的同分异构体 ) 的书写技巧: a .先写出不含支链的最长碳链;

b .然后写出少 1 个碳原子的主链,将余下的 1 个碳原子作支链加在主链上,并依

次变动支链位置; c .再写出少 2 个碳原子的主链,将余下的 2 个碳原子作为一个

乙基或两个甲基加在主链上,并依次变动其位置 ( 注意不要重复 ) ; d .以此类推,

最后分别在每个碳原子上加上氢原子,使每个碳原子有 4 个共价键.

说明 a .从上所述可归纳为:从头摘、挂中间,往端移、不到边,先甲基、后乙

基,先集中、后分散,变换位、不能同. b .在书写烯烃或炔烃的同分异构体时,

只要在碳链异构的基础上依次变动碳碳双键或碳碳叁键位置即可.

[ 烃的同分异构体种数的确定方法 ]

①等效氢法.烃分子中同一种类的氢原子称为等效氢原子.有机分子中有几种不

等效氢原子,其氢原子被一种原子或原子团取代后的一取代物就有几种同分异构体.

等效氢原子的一般判断原则: a .位于同一碳原子上的 H 原子为等效 H 原子.如

CH4 中的 4 个 H 原子为等效 H 原子. b .位于同一 C 原子上的甲基上的 H 原子为

等效 H 原子.如新戊烷 (CH3)4C 上的 12 个 H 原子为等效 H 原子. c .同一分子中

处于对称位置或镜面对称位置上的 H 原子为等效 H 原子.对于含苯环结构的分子

中等效 H 原子的种数的判断,应首先考虑苯环所在平面上是否有对称轴,若没有,

则还应考虑是否有垂直于苯环平面的对称轴存在,然后根据对称轴来确定等效 H

原子的种数. ②换元法.换元法是要找出隐含在题目中的等量关系,并将所求对象进行恰当地

转换.例如,已知正丁烷的二氯代物有 6 种同分异构体,则其八氯代物的同分异构

体有多少种 ? 正丁烷 C4H10 。的二氯代物的分子式为 C4H8Cl2 ,八氯代物的分子

式为 C4H2Cl8 ,变换为 C4Cl8H2 ,很显然,两者的同分异构体数是相同的,均为

6 种.

[ 同分异构体与同位素、同素异形体、同系物的比较 ]

同位素 同素异形体 同系物 同分异构体

适用对象 原子 单质 有机物 有机物

判断依据 ①原子之间②质子数相同,中子数不同 ①单质之间②属于同一种元

素 ①结构相似的同一类物质②符合同一通式③相对分子质量不同 ( 相差 14n)

①分子式相同②结构不同③不一定是同类物质

性 质 化学性质相同;物理性质有差异 化学性质相同;物理性质不同 化学性质

相似;物理性质不同 ( 熔点、沸点、密度呈规律性变化 ) 化学性质可能相似,也

可能不同;物理性质不同

实 例 H 、 T 、 D 红磷与白磷;金刚石与石墨 甲烷与乙烷;乙烯与丙烯 戊烷有

正、异、新戊烷三种

5 .甲烷、乙烯、乙炔及苯的比较

烃的种类 甲 烷 乙 烯 乙 炔 苯

分子式 CH4 C2H4 C2H2 C6H6

结构简式 CH2 = CH2 CH ≡ CH

分子结构特点 正四面体,键角为 109 ° 28 ′,由极性键形成的非极性分子.与 C 原

子共平面的 H 原子最多只有 2 个 平面结构,键角为 120 °,分子中所有的原子均

处于同一平面内.分子中含 C — H 极性键和 C — C 非极性键.是非极性分子 直线

形,键角为 180 °,分子中所有的原子均处于同一直线上 ( 也必处于同一平面

内 ) .分子中含 C — H 极性键和 C — C 非极性键 平面正六边形,键角为 120 °,

分子中 6 个碳原于完全相同 (6 个碳键的键长、键能、键角相同 ) . 12 个原子均处

于同一平面上

物理性质 无色、无味的气体,极难溶于水,密度比空气小 无色、稍有气味的气

体,难溶于水,密度比空气略小 纯乙炔是五色、无味的气体,密度比空气小,微

溶于水 无色、有特殊气味的液体,有毒,不溶于水,密度比水小,熔点、沸点

低.用冰冷却苯,苯凝结为无色晶体

含碳的质

量分数% 75 85.7 92 92 燃烧现象 火焰不明亮 火焰较明亮,带黑烟 火焰明亮,带浓烟 火焰明亮,带浓

化学性质 ①性质稳定,不能与强酸、强碱、酸性 KMnO4 溶液反应;②与纯 X2

发生一系列取代反应,生成 CH3X 、 CH2X2 、 CHX3 、 CX4 的混合物;③热分解:

9u 高温 — ( 隔绝空气 ) — C+2H2( 注: X 为卤素 ) 化学性质活泼①加成反应:

与 X2 、 HX 、 H2 、 H2O 等加成,能使溴水褪色②氧化反应:能使酸性 KMnO4

溶液褪色③加聚反应:

nCH2 = CH2 催化剂 化学性质活泼①加成反应:与 X2 、 HX 、 H2 、 H2O 等加成,

能使溴水褪色.如:

②氧化反应:能使酸性 KMnO4 溶液褪色 兼有烷烃和烯烃的性质:①取代反

应.与 X2 发生卤代反应,与浓 HNO3 发生硝化反 应, 与 浓 H2SO4 发生磺化反

应;②加成反应.例如在催化剂 Ni 和加热的条件下,苯与 H2 加成得到环己烷:

③苯不能使酸性 KMnO4 溶液褪色

工业制法 煤的干馏 石油裂解 煤的干馏

主要用途 气体燃料,制炭黑、氯仿等 合成酒精,制聚乙烯等 氧炔焰,制氯乙烯

等 合成纤维、橡胶、染料等

6 .烷烃、烯烃、炔烃及苯的同系物的比较

烃的类别 烷 烃 烯 烃 炔 烃 苯的同系物

分子式通式 CnH2n+2

(n ≥ 1) CnH2n

(n ≥ 2) CnH2n - 2

(n ≥ 2) CnH2n - 6

(n ≥ 6)

分子结构特点 分子中 C 原子间均以 C - C 单键连接成链状;碳链为锯齿形; C -

C 键可旋转 分子中含 C = C 键,其中的一个键键能较低,易断裂; C = C 键不能

旋转 分子中含 C ≡ C 键,其中有两个键键能较低,易断裂, C ≡ C 键不能旋转 分

子中只含一个苯环,苯环的侧链是 烷基 (CnH2n - ) ,苯环与侧链相互影响

主要化学反应 ①取代反应

②裂化反应 ①加成反应

②加聚反应

③氧化反应 ①加成反应②氧化反应 ①取代反应

②加成反应

③氧化反应

碳碳键的键长比较 C - C >苯环中的碳碳键> C = C > C ≡ C

物理性质的规律 ①常温时,烃分子中碳原子数≤ 4 个时为气体;②烃不溶于水,

气态或液态烃的密度比水小 ( 浮在水面上 ) ,③各类烃中,随分子中碳原子数增多,

熔点、沸点升高,密度增大

7 .烃的基本实验

[ 甲烷与氯气的取代反应 ]

①反应原理:

( 一氯甲烷 )

( 二氯甲烷 )

( 氯仿 )

( 四氯化碳 )

②实验现象及解释:

a .量筒内壁中出现油状液体 ( 生成的 CH2Cl2 、 CHCl3 、 CCl4 为不溶于水的液

体 ) ;

b .量筒内水面上升 ( 反应后气体总体积减小且生成的 HCl 气体易溶于水 ) ;

c .水槽中有晶体析出 ( 生成的 HCl 气体溶于水后使 NaCl 溶液过饱和 ) .

③应注意点: a .不要将混合气体放在日光直射的地方,以免引起爆炸; b .反

应产物是两种气体 (HCl 、 CH3Cl) 和三种液体 (CH2Cl2 、 CHCl3 、 CCl4) 的混合物.

[ 乙烯的实验室制法 ]

①反应原理:

CH3CH2OH CH = CH2++H2O

②所需主要仪器和用品:酒精灯,圆底烧瓶,温度计,双孔橡胶塞,碎瓷片.

③发生装置:液 + 液二 气体型装置.与制 C12 、 HCl 气体的发生装置相似,只需

将制 C12 、 HCl 气体装置中的分液漏斗改为温度计即可.

④收集方法:排水法 ( 不能用排空气法,因为乙烯与空气的密度很接近 ) .⑤反应液中无水酒精与浓 H2SO4 的体积比为 1 ∶ 3 .应首先向烧瓶中加入酒精,再

慢慢地注入浓 H2SO4( 类似于浓 H2SO4 加水稀释 ) 。使用过量浓 H2SO4 ,可提高

乙烯的产率,增加乙烯的产量.

⑥浓 H2SO4 的作用:催化剂和脱水剂.

⑦温度计水银球放置位置:必须插入反应液中 ( 以准确测定反应液的温度 ) .

⑧发生的副反应:

2CH3CH2OH C2H5OC2H5 + H2O

(乙醚)

因此,在实验室加热制乙烯时,应迅速使温度上升到 170 ℃,以减少乙醚的生成,

提高乙烯的产量。

C2H5OH + 4H2SO4( 浓 ) = 4SO2 ↑ + CO2 ↑ + C ↓ + 7H2O

在加热过程中,反应液的颜色由无色变为棕色,甚至变为黑褐色.这是因为浓

H2SO4 具有强氧化性,将部分乙醇氧化为炭.由于有上述两个副反应发生,所以

在制得的乙烯中会混有 CO2 、 SO2 等杂质气体,其中 SO2 也能使酸性 KMnO4 溶

液或溴水褪色,因此,在做乙烯的性质实验之前,应首先将气体通过碱石灰或碱液

以除去 SO2 .

⑨在圆底烧瓶中加入碎瓷片的目的:防止液体受热时产生暴沸.

[ 乙炔的实验室制法 ]

①反应原理: CaC2 + 2H2O → Ca(OH)2 ↓ + CH ≡ CH ↑

②装置:固 + 液 → 气体型装置,与制 H2 、 CO2 等气体的发生装置相同.用排

水集气法收集乙炔.

③所需主要仪器;分液漏斗,平底烧瓶 ( 或大试管、广口瓶、锥形瓶等 ) ,双孔橡

胶塞.

④不能用启普发生器的原因: a .碳化钙与水的反应较剧烈,使用启普发生器难

于控制反应速率; b .反应过程中放出大量热,易使启普发生器炸裂; c .反应生

成的 Ca(OH)2 为浆状物,易堵塞导管.

⑤注意事项: a .为减缓反应速率,得到平稳的乙炔气流,可用饱和 NaCl 溶液代

替水,用块状电石而不用粉末状的电石. b .为防止反应产生的泡沫堵塞导管,应

在导气管口附近塞上少量棉花. c .电石中混有 CaS 、 Ca3P2 等杂质,它们也跟

水反应生成 H2S 、

PH3 等气体,因此,用电石制得的乙炔 ( 俗称电石气 ) 有特殊臭味.把混有上述混

合气体的乙炔气通过盛有 CuSO4 溶液的洗气瓶,可除去 H2S 、 PH3 等杂质气体.[ 石油的分馏 ]

①原理:根据石油中所含各种烃的沸点不同,通过加热和冷凝的方法,将石油分

为不同沸点范围的蒸馏产物.

②使用的玻璃仪器:酒精灯,蒸馏烧瓶 ( 其中有防止石油暴沸的碎瓷片 ) ,温度计,

冷凝管,尾接管,锥形瓶.

③温度计水银球位置:蒸馏烧瓶支管口 ( 用以测定蒸气的温度 ) .

④冷凝管中水流方向:由下往上 ( 原因:水能充满冷凝管,水流与蒸气流发生对

流,起到充分冷凝的效果 ) .

⑤注意点: a .加热前应先检查装置的气密性. b .石油的分馏是物理变

化. c .石油的馏出物叫馏分,馏分仍然是含有多种烃的混合物.

8 .有关烃的计算类型

[ 烃的分子式的确定方法 ]

①先求烃的最简式和相对分子质量,再依; ( 最简式的相对分子质量 )n =相对分

子质量,求得分子式.

说明 a .已知 C 、 H 元素的质量比 ( 或 C 、 H 元素的质量分数,或燃烧产物的

量 ) ,均可求出该烃的最简式.

b .求有机物相对分子质量的常见公式:

▲有机物的摩尔质量= m / n

▲气态有机物的相对分子质量=标准状况下该气体密度× 22.4

有机物混合气体的平均相对分子质量= W 总/ n 总

……

▲通过相对密度求算: M 未知= D · M 已知,即 ρ A/ ρ B = MA / MB .

注:①也可先求出相对分子质量,再根据各元素的质量分数和相对分子质量直接

求得分子式.

②依各类烃的通式和相对分子质量 ( 或分子中所含电子的总数 ) 求算.

③商余法:烃的相对分子质量/ 12 → 商为 C 原子数,余数为 H 原子数.

注意 一个 C 原子的质量等于 12 个 H 原子的质量.

例 某烃的相对分子质量为 128 ,则该烃的分子式为或.④平均值法:平均值法适用于混合烃的有关计算,它是根据各组分的某种平均值

来推断烃分子式的解题方法.平均值法特别适用于缺少数据而不能直接求解的计

算.平均值法有:平均摩尔质量法、平均碳原子法、平均氢原子法和平均分子式法

等.

[ 烃的燃烧计算 ]

①烃燃烧的通式.

a .完全燃烧时 (O2 充足 ) : + (+/4)O2 → CO2 + / 2H2O

b .不完全燃烧时 (O2 不充足 ) :

+ ()O2 → CO2 + ()CO + / 2H2O

②不同烃完全燃烧时耗 O2 量的比较.

a .物质的量相同时: () 的值愈大,耗 O2 量愈多.

b ,质量相同时:

▲将 CxHy 变换为则值越大 ( 小 ) ,耗 O2 量越多 ( 少 ) ;值相同,耗 O2 量相同.

▲最简式相同,耗 O2 量相同.最简式相同的有: (CH)n —— C2H2 与 C6H6 等;

(CH2)n ——烯烃与环烷烃.

c .最简式相同的烃,不论以何种比例混合,只要混合物的总质量一定,则耗 O2

量一定.

③烃完全燃烧时,烃分子中 H 原子数与反应前后气体的物质的量 ( 或压强或体积 )

的关系.

a . t ≥ 100 ℃时 ( 水为气体 ) :

(g) + (+/4)O2 → CO2(g) + / 2H2O(g)

(+/4) / 2

∵ V 前= 1++/4 V 后= +/ 2 ∴ V 前- V 后= 1 - /4

当 V 前= V 后时,= 4 ;

当 V 前> V 后时,< 4 ;

当 V 前< V 后时,> 4 ;

由此可见,烃完全燃烧前后气体体积的变化只与烃分子中的 H 原子数有关,而与 C

原子数无关 ( 因此,在计算烃完全燃烧时,要验算耗 O2 量 ) .

规律:▲若燃烧前后气体的体积不变,

则= 4 .具体的烃有 CH4 、 C2H4 、 C3H4 及其混合物.

▲若燃烧后气体的体积减小,则< 4 .只有 C2H2 符合这一情况.

▲若燃烧后气体的体积增大,则> 4 .用体积增量法来求算具体是哪一种烃.

b . t < 100 ℃时 ( 水为液体 ) :

反应后气体的体积较反应前恒减小,用体积减量法确定具体的:

(g) + (+/4)O2 → CO2(g) + / 2H2O(aq) 气体体积减少

(+/4) 1+/4

高中化学知识点规律大全

——烃的衍生物

1 .烃的衍生物

[ 烃的衍生物的比较 ]

类别 官能团 分子结构特点 分 类 主要化学性质

烃 卤原子 ( - X) 碳-卤键 (C - X) 有极性,易断裂 ①氟烃、氯烃、溴烃;②

一卤烃和多卤烃;③饱和卤烃、不炮和卤烃和芳香卤烃 ①取代反应 ( 水解反应 ) :

R - X+H2O

R - OH + HX

②消去反应:

R - CH2 - CH2X + NaOH

RCH = H2 + NaX + H2O

醇 均为羟基

( - OH) - OH 在非苯环碳原子上 ①脂肪醇 ( 包括饱和醇、不饱和醇 ) ;②脂环

醇 ( 如环己醇 ) ③芳香醇 ( 如苯甲醇 ) ,④一元醇与多元醇 ( 如乙二醇、丙三醇 )

①取代反应:

a .与 Na 等活泼金属反应; b .与 HX 反应, c .分子间脱水; d .酯化反应②氧化反应:

2R - CH2OH + O2

2R - CHO+2H2O

③消去反应,

CH3CH2OH

CH2 = H2 ↑ + H2O

酚 - OH 直接连在苯环碳原上.酚类中均含苯的结构 一元酚、二元酚、三元酚

等 ①易被空气氧化而变质;②具有弱酸性③取代反应

④显色反应

醛 醛基

( - CHO) 分子中含有醛基的有机物 ①脂肪醛 ( 饱和醛和不饱和醛 ) ;②芳香醛;

③一元醛与多元醛 ①加成反应 ( 与 H2 加成又叫做还原反应 ) : R - CHO+H2R

- CH2OH

②氧化反应: a .银镜反应; b .红色沉淀反应: c .在一定条件下,被空气氧化

羧酸 羧基

( - COOH) 分子中含有羧基的有机物 ①脂肪酸与芳香酸;②一元酸与多元酸;

③饱和羧酸与不饱和羧酸;④低级脂肪酸与高级脂肪酸 ①具有酸的通性;②酯

化反应

酯基

(R 为烃基或 H

原子, R ′只能为烃基 ) ①饱和一元酯:

CnH2n+lCOOCmH2m+1

②高级脂肪酸甘油酯③聚酯④环酯 水解反应:

RCOOR ′ + H2ORCOOH + R’OH

RCOOR ′ + NaOH

RCOONa + R’OH

( 酯在碱性条件下水解较完全 )

2 .有机反应的主要类型

反应类型 定 义 举例 ( 反应的化学方程式 )

消去反应 有机物在一定条件下,从一个分子中脱去一个小分子 ( 如 H2O 、 HBr

等 ) 而生成不饱和 ( 含双键或叁键 ) 化合物的反应 C2H5OHCH2 = H2 ↑ + H2O

苯酚的显色反应 苯酚与含 Fe3 +的溶液作用,使溶液呈现紫色的反应

还原反应 有机物分子得到氢原子或失去氧原子的反应 CH ≡ CH + H2CH2 = H2

CH2 = H2 + H2CH3CH3

R — CHO + H2R - CH2OH

氧化反应 燃烧或被空气中的 O2 氧化 有机物分子得到氧原子或失去氢原子的反应

2CH3CH2OH + O2 2CH3CHO + 2H2O

2CH3CHO + O2 2CH3COOH

银镜反应 CH3CHO + 2Ag(NH3)2OH

CH3COONH4+2Ag ↓ + 3NH3 ↑ + H2O

红色沉淀反应 CH3CHO + 2Cu(OH)2 CH3COOH + Cu2O ↓ + 2H2O

取代反应 卤代烃的

水解反应 在 NaOH 水溶液的条件下,卤代烃与水作用,生成醇和卤化氢的反应 R

- CH2X + H2ORCH2OH + HX

酯化反应 酸 ( 无机含氧酸或羧酸 ) 与醇作用,生成酯和水的反应 RCOOH +

R’CH2OH

RCOOCH2R ′ + H2O

酯的水解反应 在酸或碱存在的条件下,酯与水作用生成醇与酸的反应 RCOOR ′ +

H2ORCOOH + R’OH

RCOOR ′ + NaOH → RCOONa + R’OH

3 .有机物的分离和提纯方法(1) 有机物的分离与提纯的原则:分离是把混合物各组分经过化学变化而设法分开,

得到混合前的物质.提纯是除去物质中混有的少量杂质.

①加入试剂时,不容易引入新的杂质;

②所用试剂最好只与杂质起反应,而不与所需提纯的物质起反应;

③反应后的其他生成物必须和所需提纯的物质易分离;

④有机物的分离与提纯不能用合成转化的方法.

(2) 常见有机物的分离、提纯方法:

①洗气法.将气体混合物中的杂质气体用溶液吸收除去.例如,除去气态烷烃中

混有的气态烯烃 ( 或炔烃 ) ,可将混合气体通过盛有溴水的洗气瓶.

②分液法.根据有机物在水中的溶解性、酸碱性等性质上的差异,把两种相互混

溶的有机物中的一种转变为可溶于水的物质,另一种仍不溶于水,从而达到分离与

提纯的目的. a .若杂质易溶于水而被提纯物不溶于水,则直接加入水后用力振荡,

使杂质转入水层中,用分液漏斗分离. b .若杂质与被提纯物都不溶于水,则先使

杂质与某种试剂反应,使其转化为易溶于水的物质后再分离.

③蒸馏 ( 分馏 ) 法.

a .对沸点差别大的有机物,可直接进行蒸馏提纯与分离;

b .混合物中各组分的沸点相差不大时,则加入某种物质,使其中一种组分转化为

高沸点、难挥发性物质后再进行蒸馏.例如,分离乙醇与乙酸的混合液时,先向其

中加入固体 NaOH ,使乙酸转化生成高沸点的 CH3COONa ,蒸馏出乙醇后,再加

入浓 H2SO4 ,使 CH3COONa 转化为 CH3COOH ,再经蒸馏得到乙酸.

4 .有机物的燃烧规律

[ 烃的含氧衍生物燃烧的通式 ]

①完全燃烧时 (O2 充足 ) :

+ (+/4)O2 → CO2 + / 2H2O

②不完全燃烧时 (O2 不充足 ) :

+ ()O2 → CO2 + ()CO + / 2H2O

[ 不同有机物完全燃烧时耗 O2 量的比较 ]

(1) 物质的量相同时,等物质的量的烃 ( 通式为 ) 、烃的衍生物 ( 通式为 ) 完全燃烧

时,耗 O2 量的比较.方法一:直接根据“ 1 mol 烃消耗 (+/4) mol O2 , 1 mol 烃的衍生物消耗 () mol O2 ”

相比较.

方法二 ( 较简便 ) :根据“ 1 个 C 耗 1 个 O2 , 2 个 H 耗 1 个 O ”的原理,先将改写

为。或当为 偶 数 时 改 写 为的形式较好,再与烃完全燃烧耗 O2 量相比较.

具体有: a .含碳原子数相同的烯烃、环烷烃、饱和一元醇等完全燃烧时耗 O2

量相同; b .含相同碳原子数的炔烃、二烯烃、饱和一元醛、饱和二元醇等完全燃

烧时耗 O2 量相同 Ic .含相同碳原子数的饱和一元羧酸、酯、饱和三元醇完全燃烧

时耗 O2 量相同.

(2) 质量相同时,最简式相同,耗 02 量相同.最简式相同的有: CH C2H2 与 C ,

H ‘等; CH2 ——烯烃与环烷烃; CH20 ——甲醛、乙酸、甲酸甲酯、葡萄糖等;

CHO ——饱和一元

醛、饱和一元羧酸、饱和一元酯等.

(3) 烃、烃的含氧衍生物组成的混合物,当总量 ( 总质量或总物质的量 ) 不变,而

其中各组分的比例变化时,完全燃烧后,要使生成的 C02 量或 H20 量或耗 02 量不

变,各组分必须满足的

条件是:

①混合物总质量一定时,若完全燃烧后生成的 C02( 或 H20) 为一恒量,则要求各

组分含 C 的质量分数 ( 或 H 的质量分数 ) 相等,而无论其最简式是否相同.如 CzH :

与 C6H ,; CH :与

C~OH802 ;等等.若完全燃烧时耗 O :量为一恒量,则要求各组分最简式相

同.如 C2H402 和 CH20 等.

②混合物总物质的量一定时,若完全燃烧后生成的 CO : ( 或 H20) 为一

恒量,则要求各组分分子中含 C 原子 ( 或 H 原子 ) 的数目相等.如 CzH+ 与 C2H40

等.若完全燃烧时耗 O 。量为一恒量,则要求各组分耗 O :量相等.如 C2H :与

C2H~O 等.

5 .求算烃的衍生物分 -S- 式的基本 75 法

(1) 依据相对分子质量求算.

规律; C~HyO 。= (M — zXl6) / 12 ,所得的商为 J ,余数为 y .

注意 1 个 CH :原子团的相对分子质量= 1 个 O 原子的相对原子质量= 16 .

(2) 依各类烃衍生物分子式的通式求算.

(3) 依据相对分子质量和最简式求算。(4) 由燃烧产物求算.

6 .有机物的推断

(1) 有机物推断题的主要类型.有机物的推断一般有以下几种题型:①由结构推断

有机物;②由性质推断有机物;③由实验推断有机物;④由计算推断有机物等.

(2) 有机物推断题的解题思路和

方法:

①顺推法:抓住有机物的结构、性质和实验现象这条主线,顺着题意正向思维,

由已知逐步推向未知,最后作出正确的推断.②逆推法:抓住有机物的结构、性

质和实验现象这条主线,逆向思维,从未知逐步推向已知,抓住突破口,把题中各

种物质联系起来进行反推,从而得到正确的推断.⑧剥离法:先根据已知条件把

明显的未知因素首先剥离出来,然后根据已知将已剥离出来的未知因素当做已知,

逐个求解那些潜在的未知因素.④分层推理法:先根据题意进行分层推理,得出

每一层的结构,然后再将每一层结构进行综合推理,最后得出正确的推断

结论.上述几种方法往往交替结合使用,使之快速简便.

7 .有机物的合成

(1) 有机合成途径和路线选择的基本要求.有机合成往往要经过多步反应才能完成,

因此确定有机合成的途径和路线时就要进行合理选择,其选择的基本要求是:原料

价廉,原理正

确,路线简捷,便于操作,条件适宜,易于分离,产率高,成本低.

(2) 有机合成题的解题思路和途径.解答有机合成题时,首先要正确判断合成的有

机物属于何种有机物,它带有什么官能团,它和哪些知识和信息有关,它所在的位

置的特点等.其

次,根据现有原料、信息和有关反应规律,尽可能合理地把目标有机物解剖

成若干片断,或寻找官能团的引入、转换、保护方法,或设法将各片断 ( 小分子化

合物 ) 拼接衍变,尽快找出合成目标有机物的关键和突破点.最后将正向思维和逆

向思维、纵向思维和横向思维相结合,选择出最佳合成方案.

(3) 有机合成题的解题方法.解答有机合成题的方法较多,其基本方法有:

①顺合成法.此法是采用正向思维方法,从已知原料人手,找出合成所需要的直

接或间接的中间产物,逐步推向待合成的有机物.其思维程序是:原料一中间产物

一产品. ②逆合成法.此法是采用逆向思维方法,从产品的组成、结构、性质人手,找出

合成所需要的直接或间接的中间产物,逐步推向已知原料.其思维程序是:产品一

中间产物一原料.

(3) 综合比较法.此法是采用综合思维的方法,将正向或逆向推导出的几种合成途

径进行比较,从而得出最佳的合成路线.

8 .烃及其重要衍生物之间的相互转化关

高中化学知识点规律大全

——糖类 油脂 蛋白质

1 .糖类

[ 糖类的结构和组成 ]

(1) 糖类的结构:分子中含有多个羟基、醛基的多羟基醛,以及水解后能生成多羟

基醛的由 C 、 H 、 O 组成的有机物.糖类根据其能否水解以及水解产物的多少,

可分为单糖、二糖和多糖等.

(2) 糖类的组成:糖类的通式为 Cn(H2O)m ,对此通式,要注意掌握以下两点:①

该通式只能说明糖类是由 C 、 H 、 O 三种元素组成的,并不能反映糖类的结构;

②少数属于糖类的物质不一定符合此通式,如鼠李糖的分子式为 C6H12O5 ;反之,

符合这一通式的有机物不一定属于糖类,如甲醛 CH2O 、乙酸 C2H4O2 等.

[ 单糖——葡萄糖 ]

(1) 自然界中的存在:葡萄和其他带甜味的水果中,以及蜂蜜和人的血液里.

(2) 结构:分子式为 C6H12O6( 与甲醛、乙酸、乙酸乙酯等的最简式相同,均为

CH2O) ,其结构简式为: CH2OH - (CHOH)4 - CHO ,是一种多羟基醛.

(3) 化学性质:兼有醇和醛的化学性质.

①能发生银镜反应.

②与新制的 Cu(OH)2 碱性悬浊液共热生成红色沉淀.

③能被 H2 还原:

CH2OH - (CHOH)4 - CHO + H2CH2OH - (CHOH)4 - CH2OH( 己六醇 )

④酯化反应:

CH2OH - (CHOH)4 - CHO+5CH3COOH CH2 - (CH) : –CHO( 五乙酸葡萄糖酯 )

OOCCH3(4) 用途:①是一种重要的营养物质,它在人体组织中进行氧化反应,放出热量,

以供维持人体生命活动所需要的能量;②用于制镜业、糖果制造业;③用于医药

工业.体弱多病和血糖过低的患者可通过静脉注射葡萄糖溶液的方式来迅速补充营

养.

[ 二糖——蔗糖和麦芽糖 ]

蔗糖 (C12H22O11) 麦芽糖 (C12H22O11)

分子结构特征 分子中不含- CHO 分子中含有- CHO

物理性质 无色晶体,溶于水,比葡萄糖甜 白色晶体,易溶于水,不如蔗糖甜

化学性质 ①没有还原性,不能发生银镜反应,也不能与新制的 Cu(OH)2 悬浊液

反应

②能水解:

C12H22011+H20 → C6H1206

( 蔗糖 ) ( 葡萄糖 )

~C6H1206

( 果糖 ) ①有还原性,能发生银镜反应,能与新制的 Cu(OH)2 悬浊液反应

②能水解:

C12H22011+H20 →

( 麦芽糖 )

2C6H1206

( 葡萄糖 )

存在或制法 存在于甘蔗、甜菜中 2(C6Hl005) 。 +nH2O →

( 淀粉 )

nCl2H22011

( 麦芽糖 )

相互联系 ①都属于二糖,分子式都是 C12H22O11 ,互为同分异构体

②蔗糖为非还原糖,而麦芽糖为还原糖

③水解产物都能发生银镜反应,都能还原新制的 Cu(OH)2 悬浊液

[ 食品添加剂 ] 功 能 品 种

食用色素 调节食品色泽,改善食品外观 胡萝卜素 ( 橙红色 ) 、番茄红素 ( 红色 ) 、

胭脂红酸 ( 红色 ) 、苋菜红 ( 紫红色 ) 、靛蓝 ( 蓝色 ) 、姜黄色素 ( 黄色 ) 、叶绿素

( 绿色 ) 、柠檬黄 ( 黄色 )

食用香料 赋予食品香味,引人愉悦 花椒、茴香、桂皮、丁香油、柠檬油、水果

香精

甜味剂 赋予食品甜味,改善口感 糖精 ( 其甜味是蔗糖的 300 倍~ 500

倍 ) 、木糖醇 ( 可供糖尿病患者食用 )

鲜味剂 使食品呈现鲜味,引起食欲 味精 ( 谷氨酸钠 )

防腐剂 阻抑细菌繁殖,防止食物腐败 苯甲酸及其钠盐、山梨酸及其盐、丙酸钙

抗氧化剂 抗氧化,阻止空气中的氧气使食物氧化变质 抗坏血酸 ( 维生素 C) 、维

生素 E 、丁基羟基茴香醚

营养强化剂 补充食物中缺乏的营养物质或微量元素 食盐加碘,粮食制品中加赖

氨酸,食品中加维生素或硒、锗等微量元素

[ 多糖——淀粉和纤维素 ]

(1) 多糖:由许多个单糖分子按照一定的方式,通过分子间脱水缩聚而成的高分子

化合物.淀粉和纤维素是最重要的多糖.

(2) 高分子化合物;即相对分子质量很大的化合物.从结构上来说,高分子化合物

通过加聚或缩聚而成.判断是否为高分子化合物的方法是看其化学式中是否有 n 值

( 叫做聚合度 ) ,如聚乙烯卡 CH :一 CH2 头、淀粉 (C6H10O5)n 等都是高分子化

合物.通过人工合成的高分子化合物属于合成高分子化合物,而淀粉、纤维素等则

属于天然高分子化合物.

(3) 淀粉和纤维素的比较.

淀粉 [(C6H10O5)n] 纤维素 [(C6H10O5)n]

结构特征 由葡萄糖单元构成的天然高分子化合物. n 值小于纤维素 由葡萄糖单

元构成的天然高分子化合物.每个葡萄糖单元中含三个- OH

物理性质 白色粉末,不溶于冷水,在热水中部分溶解 白色、无味的固体,不溶

于水和有机溶剂

化学性质 ①无还原性,为非还原糖

②水解的最终产物为葡萄糖:

(C6H10O5)n +nH2O → nC6H1206( 淀粉 ) ( 葡萄糖 )

③遇淀粉变蓝色 ①无还原性,为非还原糖

②能水解,但比淀粉难‘

(C6H10O5)n +nH2O → nC6H1206

( 纤维素 ) ( 葡萄糖 )

③能发生酯化反应:与 HNO ,、乙酸反应分别生成硝酸酯、乙酸酯

存 在 植物种子、块根、谷类中 棉花、木材中

用 途 制造葡萄糖和酒精:

造纸,制造硝酸纤维 ( 火棉、胶棉 ) 、醋酸纤维、人造丝、人造棉、炸药等

注意点 淀粉、纤维素的分子式都是 C6H10O5)n 。,但两者的 n 值不同,所以不

是同分异构体

(4) 判断淀粉水解程度的实验方法.

实验内容 结论

加入碘水 银镜反应实验

变蓝色 无银镜生成 尚未水解

变蓝色 有银镜生成 部分水解

不变蓝色 有银镜生成 已完全水解

说明 在用稀 H2SO4 作催化剂使蔗糖、淀粉或纤维素水解而进行银镜反应实验前,

必须加入适量的 NaOH 溶液中和稀 H2SO4 ,使溶液呈碱性,才能再加入银氨溶液

并水浴加热.

2 .油脂

[ 油脂 ]

(1) 油脂的组成和结构:油脂属于酯类,是脂肪和油的统称.油脂是由多种高级脂

肪酸 ( 如硬脂酸、软脂酸等 ) 与甘油生成的甘油酯.它的结构式表示如下:

在结构式中, R1 、 R2 、 R3 代表饱和烃基或不饱和烃基.若 Rl = R2 = R3 ,叫

单甘油酯;若 R1 、 R2 、 R3 不相同,则称为混甘油酯.天然油脂大多数是混甘油

酯.(2) 油脂的物理性质:

①状态:由不饱和的油酸形成的甘油酯 ( 油酸甘油酯 ) 熔点较低,常温下呈液态,

称为油;而由饱和的软脂酸或硬脂酸生成的甘油酯 ( 软脂酸甘油酯、硬脂酸甘油

酯 ) 熔点较高,常温下呈固态,称为脂肪.油脂是油和脂肪的混合物.

②溶解性:不溶于水,易溶于有机溶剂 ( 工业上根据这一性质,常用有机溶剂来

提取植物种子里的油 ) .

(3) 油脂的化学性质:

①油脂的氢化 ( 又叫做油脂的硬化 ) .油酸甘油酯分子中含 C = C 键,具有烯烃的

性质.例如,油脂与 H2 发生加成反应,生成脂肪:

油酸甘油酯 ( 油 ) 硬脂酸甘油酯 ( 脂肪 )

说明 工业上常利用油脂的氢化反应把多种植物油转变成硬化油 ( 人造脂肪 ) .硬

化油性质稳定,不易变质,便于运输,可用作制造肥皂、脂肪酸、甘油、人造奶油

等的原料.

②油脂的水解.油脂属于酯类的一种,具有酯的通性.

a .在无机酸做催化剂的条件下,油脂能水解生成甘油和高级脂肪酸 ( 工业制取高

级脂肪酸和甘油的原理 ) .例如:

(C17H35COO)3C3H5 + 3H2O3C17H35COOH + C3H5(OH)3

硬脂酸甘油酯

b .皂化反应.在碱性条件下,油脂水解彻底,发生皂化反应,生成甘油和高级脂

肪酸盐 ( 肥皂的有效成分 ) .例如:

(C17H35COO)3C3H5 + 3NaOH —→ 3C17H35COONa + C3H5(OH)3

硬脂酸甘油酯 硬脂酸钠 甘油

[ 肥皂和合成洗涤剂 ]

(1) 肥皂的生产流程:动物脂肪或植物油 +NaOH 溶液

高级脂肪酸盐、甘油和水·盐析 ( 上层:高级脂肪酸钠;下层:甘油、水的混合液 ) :

高级脂肪酸钠·肥皂

(2) 肥皂与合成洗涤剂的比较.

物 质 肥 皂 合成洗涤剂

主要成分 高级脂肪酸钠 烷基苯磺酸钠或烷基磺酸钠 结 构 分子中含有能溶于水的亲水基 ( 极性基团- COONa 或- COO - ) 和不溶于

水、但亲油的憎水基 ( 非极性基团链烃基 R - ) 分子中有能溶于水的亲水基 ( 极性

基团- SO3Na) 和不溶于水的憎水基 [ 非极性基团 CH3(CH2)nC6H4 -或烷基 R - ]

生产所需的主要原料 油脂 石油产品

去污原理 在洗涤过程中,污垢中的油脂跟肥皂接触后,高级脂肪酸钠分子的烃基

就插入油污内,而易溶于水的羧基部分则在油污外面,插入水中,这样油污被包围

起来.再经摩擦、振动,有的分子便分散成小的油污,最后脱离被洗的纤维织品而

分散到水中形成乳浊液,从而达到洗涤的目的 同肥皂去油原理相似

性能比较 ①肥皂不适合在硬水中使用,而合成洗涤剂的使用不受水质限制

②合成洗涤剂去污能力更强,并且适合洗衣机使用

③合成洗涤剂的原料价廉易得

④合成洗涤剂的大量使用会造成水体污染,水质变坏

3 .蛋白质

[ 蛋白质 ]

(1) 存在:蛋白质广泛存在于生物体内,是组成细胞的基础物质.动物的肌肉、皮

肤、发、毛、蹄、角等的主要成分都是蛋白质.植物的种子、茎中含有丰富的蛋白

质.酶、激素、细菌、抵抗疾病的抗体等,都含有蛋白质.

(2) 组成元素: C 、 H 、 O 、 N 、 S 等.蛋白质是由不同的氨基酸通过发生缩聚反

应而成的天然高分子化合物.

(3) 性质:

①水解.在酸、碱或酶的作用下,能发生水解,水解的最终产物是氨基酸.

②盐析.向蛋白质溶液中加入某些浓的无机盐 ( 如铵盐、钠盐等 ) 溶液,可使蛋白

质的溶解度降低而从溶液中析出.

说明 a .蛋白质的盐析是物理变化. b .蛋白质发生盐析后,性质不改变,析出

的蛋白质加水后又可重新溶解.因此,盐析是可逆的.例如,向鸡蛋白溶液中加入

(NH4)2SO4 的饱和溶液,有沉淀生成,再加入水,生成的沉淀又溶解. c .利用

蛋白质的盐析,可分离、提纯蛋白质.

③变性.在热、酸、碱、重金属盐、紫外线、有机溶剂的作用下,蛋白质的性质

发生改变而凝结.

说明 蛋白质的变性是化学变化.蛋白质变性后,不仅丧失了原有的可溶性,同时

也失去了生理活性.因此,蛋白质的变性是不可逆的,经变性析出的蛋白质,加水

后不能再重新溶解.④颜色反应.含苯环的蛋白质与浓 HNO3 作用后,呈黄色.例如,在使用浓

HNO3 时,不慎将浓 HNO3 溅到皮肤上而使皮肤呈现黄色.

⑤灼烧蛋白质时,有烧焦羽毛的味.利用此性质,可用来鉴别蛋白质与纤维素

( 纤维素燃烧后,产生的是无味的 CO2 和 H2O) .

[ 酶催化作用的特点 ]

(1) 条件温和,不需加热.在接近体温和接近中性的条件下,酶就可以起作用.在

30 ℃~ 50C 之间酶的活性最强,超过适宜的温度时,酶将失去活性.

(2) 具有高度的专一性.如蛋白酶只能催化蛋白质的水解反应;淀粉酶只对淀粉起

催化作用;等等.

(3) 具有高效催化作用.酶催化的化学反应速率,比普通催化剂高 107 ~ 1013 倍.

高中化学知识点规律大全

——合成材料

1 .有机高分子化合物简介

[ 有机高分子化合物 ]

(1) 高分子化合物的组成:相对分子质量很大的有机化合物称为高分子化合物,简

称高分子,又叫聚合物或高聚物.

①单体:形成高分子化合物的小分子.如聚乙烯的单体是乙烯.

②链节:高分子化合物中重复出现的单元称为链节.例如,聚乙烯的链节是-

CH2 - CH2 -.链节是以单体为基础的.

③聚合度:每个高分子中链节重复的次数.聚合度常用 n 表示, n 值越大,相对

分子质量越大.对于单个的高分子而言, n 值为某一个整数,所以其相对分子质量

是确定的.但对于一块高分子材料来说,它是由许多 n 值相同或不同的高分子聚集

起来的,因此,高聚物是一种混合物.

(2) 高分子化合物的结构特点;有线型结构和体形 ( 网状 ) 结构.

①线型结构是长链状的,通过 C - C 键或 C - C 键和 C - O 键相连接.线型结构

的高分子,可以不带支链,也可以带支链.如聚乙烯、聚氯乙烯、淀粉、纤维素等

均为线型高分子化合物.

②高分子链上若还有能起反应的官能团,当它跟其他单体发生反应时,高分子链

间能形成化学键,产生交联时形成体型结构的高分子化合物.

(3) 高分子化合物的基本性质:①溶解性.线型有机高分子能溶解在某些有机溶剂中,但溶解缓慢;体型有机高

分子不能溶解,只有一定程度的胀大.

②热塑性和热固性.

a .线型高分子的热塑性:线型高分子受热至一定温度范围时,开始熔化为流动的

液体,冷却后变为固体,加热后又熔化,如此循环. b .体型高分子的热固性:体

型高分子加工成型后受热不会再熔化.

③强度.某些高分子材料的强度比金属还大.

④具有电绝缘性.

⑤具有耐化学腐蚀、耐热、耐磨、耐油、不透水的性能.但也有不耐高温、易燃

烧、易老化、废弃后不易分解等缺点.

2 .合成材料

[ 塑料、合成纤维和合成橡胶的比较 ]

合成材料 塑 料 合成纤维 合成橡胶

类 型 热塑性塑料、热固性塑料 纤维有天然纤维、人造纤维和合成纤维.合成纤

维和人造纤维统称化学纤维 橡胶有天然橡胶和合成橡胶

举 例 聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、有机玻璃、酚醛塑料、聚四氟乙

烯,具有特殊用途的工程塑料、增强塑料、改性塑料等 涤纶、锦纶、腈纶、丙纶、

维纶、氯纶,具有特殊性能的芳纶纤维、碳纤维、耐辐射纤维、防火纤维等 丁苯

橡胶、顺丁橡胶、氯丁橡胶等通用橡胶,聚硫橡胶、耐高温和耐严寒的硅橡胶等

主要原料 石油产品等 石油、天然气、煤和浓副产品等 石油、天然气等

主要性能 电绝缘性好,质轻,耐化学腐蚀,防水,耐油性差,易老化 强度高,

弹性好,耐磨,耐化学腐蚀,不发霉,不怕虫蛀,不缩水 高弹性,绝缘性好,气

密性好,耐油,耐高温或低温

用 途 不同的塑料有不同的用途.如日常生活中使用的食品袋、包装袋大多是由

聚乙烯、聚氯乙烯制成的,有机玻璃可用于制汽车、飞机用玻璃以及光学仪器、医

疗器械,等等 除了供人类穿着外,在生产和国防上也有很多用途.例如,锦纶可

制衣料织品、降落伞绳、轮胎帘子线、缆绳和渔网等 是制造飞机、军舰、汽车、

拖拉机、收割机、水利排灌器具、医疗器械等所必须的材料

3 .新型有机高分子材料

新型有机高分子材料有:高分子膜,具有光、电、磁等特殊功能的高分子材料,生

物高分子材料,医用高分子材料,隐身材料和液晶高分子材料等.(1) 功能高分子材料:是指既有传统高分子材料的机械性能又有某些特殊功能的高

分子材料.

(2) 复合材料:是指由两种或两种以上材料组合而成的一种新型材料,其中一种作

为基体,另外一种作为增强剂.复合材料一般具有强度高、质量轻、耐高温、耐腐

蚀等优异性能.

高中化学知识点规律大全

——胶体的性质及其应用

胶体

[ 分散系、分散质和分散剂 ]

一种 ( 或几种 ) 物质的微粒分散到另一种物质里形成的混合物,叫做分散系.如

NaCl 溶解在水中形成的 NaCl 溶液就是一种分散系.在分散系中,分散成微粒的物

质,叫做分散质.如 NaCl 溶液中的 NaCl 为分散质.分散质分散在其中的物质,叫

做分散剂.如 NaCl 溶液中的水为分散剂.

[ 胶体 ] 分散质微粒的直径大小在 1 nm ~ 100nm 之间的分散系,叫做胶体.

说明 ①胶体是以分散质粒子的大小为特征的,它只是物质的一种存在形式.如

NaCl 溶于水中形成溶液,但如果分散到酒精中则可形成胶体.②根据分散剂所处

状态的不同,胶体可分为三种: a .液溶胶 ( 溶胶 ) :分散剂是液体,如 Fe(OH)3

胶体、 AgI 胶体、淀粉胶体和蛋白质胶体等. b .气溶胶;分散剂是气体,如雾、

云、烟等. c .固溶胶,如烟水晶、有色玻璃等.

[ 渗析 ] 把混有离子或分子杂质的胶体装入半透膜袋,并浸入溶剂 ( 一般是水 ) 中,

从而使离子或分子从胶体中分离出去的操作,叫做渗析.

说明 通过渗析可用于分离胶体与溶液或净化、精制胶体.

[ 溶液、胶体和浊液 ( 悬浊液或乳浊液 ) 的区别与联系 ]

分散系 溶 液 胶 体 悬 ( 乳 ) 浊液

分散系的微粒组成 单个分子或离子 若干分子的集合体或单个的大分子 大量分子

集合而成的固体小颗粒 ( 或小液滴 )

分散系的微粒直径 < 1 nm 1 nm ~ 100 nm > 100 nm

外 观 均一、透明、稳定 均一、透明、稳定 不均一、浑浊、不稳定,静置后易

沉淀 ( 或分层 )

能否透过半透膜 能 不能 不能

能否透过滤纸 能 能 不能 是否有丁达尔效应 没有 有 颗粒直径接近 100nm 的溶液也有丁达尔效应

实 例 食盐水、碘酒 Fe(OH)3 胶体、 AgI 胶体、淀粉溶胶 泥浆水、油水、牛奶

联 系 都是分散质分散到分散剂中形成的混合体系

3 .胶体的性质及其应用

解 释 说 明 应 用

质 丁达尔效应 强光束通过胶体时,从侧面可看到一条光亮的“通路”的现象 胶体

的丁达尔现象是由于胶体微粒使光线散射而产生的.溶液中的溶质微粒太小,没有

这种现象 用于鉴别胶体和溶液

布朗运动 在胶体中,胶体微粒 ( 简称胶粒 ) 不停地作无规则的运动 胶体作布朗

运动的原因是因为水 ( 分散剂 ) 分子从各方面撞击胶粒,而每一瞬间胶粒在不同方

向受到的力是不同的,所以胶粒运动方向随时都在改变,因而形成布朗运动 证明

物质是不断运动的,是使胶体保持稳定的原因之一

电 泳 在外加电场的作用下,胶粒在分散剂里向电性相反的电极 ( 阴极或阳极 )

作定向移动的现象 ①胶粒带电的原因:胶粒直径小一表面积大一吸附能力强一胶

粒表面吸附溶液中的阴离子或阳离子②同种胶粒在同一溶液中只吸附同一种离子

而带相同电荷.一般来说,金属氢氧化物、金属氧化物的胶粒吸附阳离子,带正电

荷,在外加电场的作用下,向阴极移动;非金属氧化物、金属硫化物的胶粒吸附阴

离子,在外加电场的作用下,向阳极移动 证明胶体微粒带有电荷及所带电荷的种

类.例如,用 Fe(OH)3 胶体做电泳实验时,发现阴极附近颜色变深,而阳极附近

颜色变浅,说明 Fe(OH)3 胶体带正电荷

聚 沉 胶体的微粒在一定条件下,聚集成较大的颗粒而形成沉淀,从分散剂中析

出 要使胶体聚沉,则必须减弱或中和胶粒所带的同种电荷,以减弱或消除胶粒之

间的相互排斥力,使胶粒聚集成较大颗粒 ( 直径> 100nm) 而形成沉淀胶体聚沉的

方法有:①加入电解质;②加热;③加入带相反电荷的电解质

高中化学知识点规律大全

——电解原理及其应用

1 .电解原理

[ 电解、电解池 ( 槽 )] 使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的

过程叫做电解.借助于电流引起氧化还原反应的装置,也就是把电能转变为化学能

的装置,叫做电解池或电解槽.

构成电解池 ( 电解槽 ) 的条件:(1) 有外加直流电源.

(2) 有电解质溶液或熔融的离子化合物.

(3) 有两个电极 ( 材料为金属或石墨,两极材料可相同或不同 ) :

阴极:与直流电源的负极直接相连的一极.

阳极:与直流电源的正极直接相连的一极.

(4) 两个电极要与电解质溶液接触并形成回路.

注意 电解池的阴、阳极完全由外加直流电源的负、正极确定,与电极材料本身的

性质无关.而原电池的正、负极则由构成电极材料本身的性质决定.

[ 惰性电极和活性电极 ] 在电解时,根据电极本身是否参与氧化还原反应,可把电

极分为惰性电极和活性电极两类:

(1) 惰性电极 (C 、 Pt 等 ) :只起导电作用,不参与反应;

(2) 活性电极 ( 除 Pt 、 Au 外的其余金属 ) :当作阳极时,除起导电作用外,还失

去电子变成金属阳离子进入溶液中.

[ 电解原理 ]

阴极:阴极→发生还原反应→溶液中的金属阳离子或 H +得电子→电极的质量增加

或放出 H2 →电极本身一定不参加反应.

阳极:阳极→发生氧化反应→活性电极溶解或惰性电极时溶液中的阴离子 ( 或 OH

- ) 失去电子→电极的质量减轻或放出 O2 或析出非金属单质.

电子流向:外接电源 (+) →外接电源 ( 一 ) →电解池阴极→溶液中离子定向移动→电

解池阳极→外接电源 (+) .

电流方向:与电子流向相反.

[ 离子的放电顺序 ]

(1) 在阴极上.在阴极上发生的是得电子反应,因此,电极本身只起导电作用而不

能发生氧化还原反应,发生反应的是溶液中的阳离子,它们得电子的能力顺序为:

Ag +、 Fe3 +、 Cu2 +、 H +、 Pb2 +、 Fe2 +、 Zn2 +、( H +)、 Al3 +、

Mg2 +、 Na +、 Ca2 +、 K +

得电子能力由易到难

说明 上列顺序中 H +有两个位置:在酸溶液中, H +得电子能力在 Cu2 +与 Pb2

+之间;若在盐溶液中,则 H +位于 Zn2 +与 Ag +之间.(2) 在阳极上.首先应考虑电极是活性电极还是惰性电极,若为活性电极,则是阳

极本身失去电子被氧化成阳离子进入溶液中,即:,此时不能考虑溶液中阴离子的

失电子情况;若为惰性电极,溶液中的阴离子失电子的能力顺序为:

NO3 -或 SO42 -等含氧酸根、 OH -、 Cl -、 Br -、 I -、 S2 -

失电子能力由弱到强

[ 电离与电解的区别和联系 ]

电 离 电 解

发生条件 电解质受热或受水分子的作用 ( 无须通电 ) 受直流电的作用

特 征 阴、阳离子作不规则的运动,无明显化学变化 阴、阳离子作定向移动,在

两极上有物质析出

说 明 电解质电离时,发生了物理变化和化学变化 ①电解质溶液的导电过程,

就是该溶液的电解过程②温度升高,电解质溶液的导电能力增强,电解速度加快

( 但金属的导电性随温度升高而减弱 )

实 例 CuCl2 = Cu2 + +2Cl - CuCl2Cu2 + +Cl2 ↑

相互关系 电解质只有在电离后才能电解

[ 原电池与电解池 ]

电 极 电极反应 电子转移方向 能量

转变 举 例

原电池 正、负极由电极材料决定:相对活泼的金属作负极;较不活泼的金属作正

极 负极:电极本身失去电子,发生氧化反应

正极:溶液中的阳离子得到电子,发生还原反应 电子由负极流出,经外电路回正

极 化学能转变为电能 铜锌原电池

负极:

Zn - 2e -= Zn2 +

正极:

2H + +2e -= H2 ↑

电解池 阴、阳极完全由外加直流电源的负、正极决定:与直流电源正极相连的是

阳极;与直流电源负极相连的是阴极 阴极:较易获得电子的阳离子优先得到电子,

发生还原反应阳极,金属或较易失去电子的阴离子优先失去电子,发生氧化反应

电子由直流电源的负极流出,经导线到达电解池的阴极,然后通过电解液中的离子放电,电子再从阳极经导线回到直流电流的正极 电能转变为化学能 以石墨为电

极电解 CuCl2 溶液

阳极:

2C1 -- 2e -= C12 ↑

阴极:

Cu2 + +2e -= Cu ↓

[ 用惰性电极作阳极电解酸、碱、盐水溶液的规律 ]

物 质 代表物 参加电解

的物质 阴极 ( 区 )

产物 阳极 ( 区 )

产物 溶液 pH

的变化

酸 含氧酸 H2SO4 、 HNO3 H2O H2 O2 减小

无氧酸

( 除 HF) HCl HCl H2 C12 增大

碱 强碱 NaOH 、 KOH H2O H2 O2 增大

盐 不活泼金属的无氧酸盐 CuCl2 CuCl2 Cu C12 增大 ( 若考虑 C12 的溶解,则

pH 减小 )

活泼金属的

无氧酸盐 NaCl NaCl 、 H2O H2 、 NaOH C12 减小

不活泼金属的含氧酸盐 CuSO4 、 AgNO3 CuSO4 、 H2O

AgNO3 、 H2O Cu ; Ag O2 、 H2SO4

O2 、 HNO3 增大

活泼金属的

含氧酸盐 K2SO4 、 NaNO3

KNO3 、 Na2SO4 H2O H2 O2 不变 归纳: (1) 电解含氧酸、强碱和活泼金属含氧酸盐的水溶液,实际上都是电解水,

即:

2H2O2H2 ↑ + O2 ↑

(2) 电解无氧酸 (HF 除外 ) 、不活泼金属无氧酸的水溶液,就是电解溶质本身.例

如:

2HClH2 ↑ + Cl2 ↑ CuCl2Cu + C12 ↑

(3) 电解活泼金属无氧酸盐溶液时,电解的总化学方程式的通式可表示为:

溶质 + H2OH2 ↑ + 碱 + 卤素单质 X2( 或 S)

(4) 电解不活泼金属含氧酸盐的溶液时,电解的总化学方程式的通式可表示为:

溶质 + H2OO2 ↑ + 酸 + 金属单质

(5) 电解时,若只生成 H2 , pH 增大.若只生成 O2 ,则 pH 减小.若同时生成 H2

和 O2 ,则分为三种情况:电解酸的溶液, pH 减小;电解碱的溶液, pH 增大;

电解盐的溶液, pH 不变.

2 .电解原理的应用

[ 铜的电解精炼、电镀铜 ]

项 目 铜的电解精炼 电镀铜

含 义 利用电解原理将粗铜中的杂质 ( 如锌、铁、镍、银、金等 ) 除去,以获得电

解铜 ( 含 Cu 的质量分数达 99 . 95 %~ 99 . 98 % ) 的过程 利用电解原理在某

些金属的表面镀上一薄层其他金属 ( 铜 ) 或合金的过程

目 的 制得电解铜,以增强铜的导电性 使金属更加美观耐用,增强防锈抗腐能力

电解液 CuSO4 溶液 ( 加入一定量的硫酸 ) 含有镀层金属离子 (Cu2 + ) 的电解质溶

液作电镀液 ( 如 CuSO4 溶液 )

阳极材料 粗铜 镀层金属 (Cu)

阴极材料 纯铜 待镀金属制品

电极反应式 阴极 Cu2 + +2e -= Cu Cu2 + +2e -= Cu

阳极 Cu - 2e -= Cu2 +

Zn - 2e -= Zn2 +

Ni - 2e -= Ni2 + Cu - 2e -= Cu2 +

特 点 ①阳极反应为粗铜中的 Cu 及杂质失去电子而溶解②溶液中 CuSO4 的浓度基本不变 ①阳极本身失去电子而溶解

②溶液中金属阳离子的浓度保持不变

③溶液的 pH 保持不变

说 明 当阳极上的 Cu 失去电子变成 Cu2+ 溶解后,银、金等金属杂质以单质的形

式沉积于电解槽底,形成阳极泥 ①铜镀层通常主要用于电镀其他金属之前的预镀

层,以使镀层更加牢固和光亮

②电镀工业的废水中常含剧毒物质如氰化物、重金属等.因此必须经过处理才能

排放

[ 氯碱工业 ]

(1) 电解饱和食盐水溶液的反应原理.

阳极电极反应式 (Fe 棒 ) : 2H + +2e -= H2 ↑

(H +得电子产生 H2 后,阴极区 OH -浓度增大而显碱性 )

阳极电极反应式 ( 石墨 ) : 2C1 ―― 2e -= Cl2 ↑

电解的总化学方程式: 2NaCl + H2O2NaOH + H2 ↑ + Cl2 ↑

(2) 设备:离子交换膜电解槽.离子交换膜电解槽主要由阳极、阴极、离子交换膜、

电解槽框和导电铜棒等组成,每台电解槽由若干个单元槽串联或并联组成.电解槽

的阳极用金属钛制成;阴极由碳钢网制成.

(3) 阳离子交换膜的作用:①把电解槽隔为阴极室和阳极室;②只允许 Na +通过,

而 Cl -、 OH -和气体则不能通过.这样,既能防止生成的 H2 和 Cl2 相混合而发

生爆炸,又能避免 C12 进入阴极区与 NaOH 溶液作用生成 NaClO 而影响烧碱的质

量.

(4) 离子交换膜法电解制烧碱的主要生产流程

说明 为除去粗盐中的 Ca2 +、 Mg2 +、 Fe3 +、 SO42 -等杂质离子,需依次加

入过量的 BaCl2 溶液 ( 除去 SO42 - ) 、 NaOH 溶液 ( 除去 Mg2 +、 Fe3 + ) 和

Na2CO3 溶液 ( 除去 Ca2 +和剩余的 Ba2 + ) ,最后加入盐酸中和 NaOH 以及将剩

余的 Na2CO3 转化为 NaCl .

高中化学知识点规律大全

——硫酸工业

[ 接触法制硫酸 ]

生产阶段 典型设备 反应的化学方程式 说 明

燃烧硫

或煅烧

硫铁矿制取 SO2 及净化 沸腾炉 S+02===S02

4FeS2 十 1102====2Fe20 +8S02 用煅烧黄铁矿制得的炉气因含水蒸气、砷、硒等

的化合物和矿尘,会使催化剂中毒,故必须经过除尘、洗涤、干燥等净化处理

接触氧化 接触室 在常压和 400C ~ 500 ℃时,反应速率和 SO2 的平衡转化率都

比较理想

三氧化硫的吸收 吸收塔 3SO3 + H2O = H2SO4 ①直接用水或稀 H2SO4 吸收

SO3 易形成酸雾且吸收速率小,故工业上通常采用 98.3 %的 H2SO4 作吸收剂;②

从吸收塔出来的 SO2 可进行第二次氧化

[ 硫酸工业的综合经济效益 ]

(1) 环境保护与原料的综合利用.化工生产必须保护环境,严格治理“三废” ( 废气、

废水、废渣 ) ,并尽可能把“三废”变为有用的副产品,实现原料的综合利用.

①尾气吸收.尾气中含有的 SO2 气体可用氨水吸收:

SO2 + 2NH3 + H2O = (NH4)2SO3

(NH4)2SO3 + H2SO4 = (NH4)2SO4 + SO2 ↑ + H2O

经反应得到的 SO2 气体可再进入硫酸厂循环利用, (NH4)2SO4 可作肥料.

②污水处理.生产过程中的污水里含有的 H2SO4 等杂质,可用石灰乳中和处理:

Ca(OH)2 + H2SO4 = CaSO4 + H2O

③废渣的利用.黄铁矿矿渣可作为制造水泥原料或用于制砖;含铁品位高的矿渣,

经处理后可炼铁.

(2) 能量的充分利用.硫酸生产过程中的化学反应都是放热反应,可充分利用这些

反应放出的热能 ( 称之为“废热” ) 来降低生产成本.例如,在沸腾炉旁设置“废热”

锅炉,产生蒸汽来发电;在接触室中设热交换装置,利用 SO2 氧化为 SO3 时放出

的热量来预热即将参加反应的 SO2 和 O2 使其达到适宜的反应温度.因此,在生产

中充分利用“废热”,不仅不需要由外界向硫酸厂供给能量,而且还可以由硫酸厂向

外界输出大量的能量.

(3) 生产规模和厂址选择.一般来说,现代化工生产要求有较大的生产规模.化工

厂厂址的选择,涉及原料、水源、能源、土地供应、市场需求、交通运输和环境保

护等诸多因素,应对这些因素综合考虑,权衡利弊,才能作出合理的选择. 由于硫酸是腐蚀性液体,不便贮存和运输,因此要求把硫酸厂建在靠近硫酸消费

中心的地区.工厂规模的大小,主要由硫酸用量的多少来决定.

硫酸厂选址应避开人口稠密的居民区和环境保护要求高的地区.

高中化学知识点规律大全

——化学实验方案的设计

[ 制备实验方案的设计 ]

物质的制备是在一定的实验条件和过程中进行的.实验条件不同,所生成的物质

的状态、性质也常会各不相同.因此,在设计物质制备的实验方案时,要使实验过

程达到和保持某种状态,发生某种特定变化并得到理想的结果,就必须对实验条件

进行严格、有效的控制.

有机物的制备要通过有机反应来实现.各类有机物的结构和性质,就是有机物制

备的基础.一种有机物的性质,往往是另一种有机物的制备方法.尽管有机物数量

庞大,但是各类有机物之间一般存在着确定的相互转化的衍生关系.理解和掌握这

种关系,可以为寻找有机物制备的合理途径、正确地进行有机物的制备提供科学的

依据.因此,在设计有机物的制备实验方案时,要充分利用这种衍生关系.

设计制备实验方案的一般思路是:①列出可能的几种制备方法和途径;②从方法

是否可行、装置和操作是否简单、经济与安全等方面进行分析和比较;③从中选

取最佳的实验方法.在制定具体的实验方案时,还应注意对实验条件进行严格、有

效的控制.

[ 性质实验方案的设计 ]

物质在不同条件下表现出来的各种性质都与它的结构有关,因而该物质的性质反过

来也能在一定程度上反映其结构,并决定它的用途和制法.因此,在进行性质实验

方案的设计时,要抓住物质的本质特征进行整体思考,学会分析、比较、综合、概

括.将元素及其化合物的有关知识系统化,应用元素周期律来分析元素及其化合物

的有关知识,使有关元素的存在、性质和制法的知识条理化.

设计性质实验方案的思路是,①充分了解物质结构与性质之间的关系;②根据物

质的结构特点,设计实验方案来探索或验证物质所具有的一些性质.

[ 化学实验方案设计的基本要求 ]

(1) 一个完整的化学实验方案包括的内容:

①实验名称;

②实验目的;

③实验原理;④实验用品 ( 仪器、药品及规格 ) ;

⑤实验步骤 ( 包括实验仪器装配和操作 ) ;

⑥实验现象记录及结果处理;

⑦问题和讨论.

(2) 设计一个实验的思路和过程:

①根据实验目的,阐明实验原理,选择合适的仪器和药品;

②根据实验特点,设计实验装置,画出装置图;

③根据实验的要求,设计可行的操作步骤和观察重点,分析实验中应注意的事项;

④实验结束后,应写出完整的实验报告.

在设计实验时,应在各种设计方案中,通过对比和归纳,选择出具有安全性好、

药品易得、操作简便、装置简单而现象明显的最佳方案.

(3) 进行化学实验方案设计时应遵循的基本要求:

①科学性:科学性是化学实验方案设计的首要原则.所谓科学性是指实验原理、

实验操作程序和方法必须正确.在操作程序的设计上,只能先取少量固体溶解;再

取少量配成的溶液加入试剂进行实验,而不能将样品全部溶解或在溶解后的全部溶

液中加入试剂.

②安全性:实验设计时,应尽量避免使用有毒药品和进行具有一定危险性的实验

操作.如果必须使用,应在所设计的化学实验方案中详细写明注意事项,以防造成

环境污染和人身伤害.

③可行性:实验设计应切实可行,所选用的化学药品、仪器、设备和方法等在中

学现有条件下能够满足.

④简约性:实验设计应尽可能简单易行,应采取简单的实验装置,用较少的实验

步骤和实验药品,并能在较短的时间内完成实验.

对同一个化学实验,可以设计出多种实验方案,并对它们进行选择.所采用的实

验设计方案,应具有效果明显、操作安全、装置简单、用药少、步骤少、时间短等

优点.

物质的检验

[ 物质检验的一般要求 ]

(1) 检验时所发生的反应要有明显的外部特征,如溶液颜色的变化、沉淀的生成和

溶解、生成的沉淀的颜色、气体的产生以及产生的气体的气味等.此外,反应速率

要大且反应完全.(2) 检验时所发生的反应要在适宜的酸碱度、浓度和温度下进行.

(3) 要排除干扰物质的影响.

(4) 检验时所发生的反应要有良好的选择性.要注意选用选择性高或特征反应来进

行物质的检验.

[ 物质检验的基本思路和步骤 ]

(1) 对试样进行外观观察.对试样进行外观观察的主要目的是利用被检验物质的颜

色和状态,对可能含有的某些组分进行推断,进而排除某些组分存在的可能性.如

果试样是无色或白色晶体,则可排除有色物质的离子如 Cu2 +、 Fe3 +、 Fe2 +、

MnO4 -等;如果试样有颜色,也可初步判断可能由哪种离子构成.

(2) 试样的准备.不论是固体试样还是液体试样,都只能取少量用于配制溶液或用

于检验,要留有一定量的试样备用.

由于有些阴离子在酸性溶液中会生成气体而逸出,或发生氧化还原反应而改变价

态,或与 H +发生中和反应.因此,用于检验阴离子的试样通常要配成碱性溶液,

而且不能加入氧化剂或还原剂.

由于 NH4 +可以与 OH -反应生成气体,还有一些阳离子在碱性溶液中会发生水

解.因此,用于检验阳离子的试样通常要配成弱酸性.

(3) 检验.在进行检验时,除了要考虑各离子的特征反应外,最重要的是要选取适

当的措施排除离子之间可能存在的干扰.只要排除干扰的方法得当,就可以设计出

正确的实验方案.

①除少数几种阴离子 ( 如 SO42 -、 Cl -等 ) 外,阴离子检验时的干扰一般比较

少,有可能进行分别检验,在检验同一试样中共存的阳离子时,相互干扰则比较多,

因此,在进行阳离子检验时,必须首先排除干扰,然后才能进行检验.

②由于各种阴离子之间往往会发生相互反应,因此,在同一试样中的阴离子种类

一般不会多.但因为阳离子之间相互反应的可能性较小,所以在同一试样中的阳离

子种类就会多些.

③在阴离子的检验中,可利用某些阴离子能与酸反应生成气体的性质,首先在固

体试样上滴加稀盐酸或稀硫酸,然后根据气体的气味初步判断含有的阴离子;也可

利用某些阴离子可与试剂生成沉淀时的反应条件和沉淀颜色初步判断可能存在的阴

离子.在阳离子检验中,利用某些阳离子带有颜色,或能发生水解,或与碱反应生

成沉淀,或具有两性等特点,初步判断试样中可能存在的阳离子,从而排除某些阳

离子存在的可能性.

④焰色反应.对于像 K +、 Na +等阳离子,可利用焰色反应进行检验.

[ 物质检验的操作方法 ](1) 若为固体物质,应先取少量样品用蒸馏水溶解.

(2) 检验的目的是为了以后的使用,若用原瓶直接进行操作,就会污染原来的整瓶

试剂.因此.应取少许样品试液在试管中进行实验,而绝不可在原试剂瓶中进行检

验.

(3) 在同时检验多种物质时,应将各样品进行编号,以免混淆.

(4) 在答题时,不许“指名道姓”,叙述时不可出现“取某某物质加入某某试剂…”的

字样.叙述方法为:各取少许样品→加蒸馏水溶解→加入所需试剂→描述实验现象

→得出结论→原理.

[ 常见离子的检验方法 ]

(1) 常见阳离子的特征反应和检验方法.

阳离子 检验试剂 实验现象 离子方程式

H + ①紫色石蕊试液

②橙色甲基橙试液

③锌片 ( 或铁片 ) ①石蕊试液变红色

②甲基橙试液变红色

③有能燃烧的气体产生 Zn + 2H += Zn2 + + H2 ↑

K + 焰色反应 紫色 ( 透过蓝色钴玻璃 )

Na + 焰色反应 黄色

NH4 + NaOH 溶液 ( 浓 ) 加热,产生有刺激性气味、使湿润红色石蕊试纸变蓝色

的气体 NH4 + + OH -= NH3 ↑ + H2O

Fe2 + ① NaOH 溶液

②新制的氯水 +KSCN 溶液 ①生成白色沉淀,迅速变为灰绿色,最后变成红褐色

②滴加新制的氯水,溶液由浅绿色变为黄色,再滴加 KSCN 溶液,溶液呈红色 ①

Fc 2 + + 2OH -= Fe(OH)2 ↓

4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3

② 2Fe2 + + C12 = 2Fe3 + + 2Cl -

Fe3 + + 3SCN - = Fe(SCN)3

Fe3 + ① NaOH 溶液② KSCN 溶液 ①生成红褐色沉淀

②生成红色溶液 ① Fc 3 + + 3OH -= Fe(OH)3 ↓

② Fe3 + + 3SCN - = Fe(SCN)3

Cu2 + ① NaOH 溶液

②浓氨水 ①生成蓝色絮状沉淀,加热后变成黑色

②生成的蓝色沉淀,溶于过量浓氨水中,呈深蓝色溶液 ① Cu2 + +2OH -=

Cu(OH)2 ↓

Cu(OH)2CuO + H2O

② Cu2 + + 2NH3 · H2O =

Cu(OH)2 ↓ + 2NH4 +

Cu(OH)2 + 4NH3 · H2O =

[Cu(NH3)4]2 + +2OH -

+4H2O

Ag + ①盐酸或氯化物 + 稀 HNO3

② NaOH 溶液

③氨水 ①生成白色沉淀,白色沉淀不溶于稀 HNO3

②生成白色沉淀,并迅速变为棕黑色

③生成白色沉淀,过量的氨水使沉淀溶解 ① Ag + + C1 -= AgCl ↓

② Ag + + OH -= AgOH ↓

2AgOH = Ag2O + H2O

③ Ag + +2NH3 · H2O =

AgOH ↓ + 2NH4 +

AgOH + 2NH3 · H2O =

[Ag(NH3)2] + + 2H2O

Al3 + ①氨水

② NaOH 溶液 ①产生白色沉淀

②产生白色胶状沉淀,过量的 NaOH 溶液使沉淀溶解 ① A13 + +3NH3 · H2O =Al(OH)3 ↓ +3NH4 +

② A13 + + 3OH -= Al(OH)3 ↓

A1(OH)3 + OH -= A1O2 - + 2H2O

Mg2 + NaOH 溶液 产生白色絮状沉淀,过量的 NaOH 溶液不能使沉淀溶解 Mg2

+ +2OH -= Mg(OH)2 ↓

Ca2 + Na2CO3 溶液 + 稀盐酸 产生白色沉淀,沉淀溶于稀盐酸中 Ca2 + + CO32

-= CaCO3 ↓

CaCO3+2H += Ca2 + + CO2 ↑ + H2O

(2) 常见阴离子的特征反应和检验方法.

阴离子 检验试剂 实验现象 离子方程式

OH - ①无色酚酞试液

②紫色石蕊试液

③甲基橙试液 ①酚酞试液变红色

②紫色石蕊试液变蓝色

③橙色甲基橙试液变黄色

CO32 - 稀盐酸 ( 或硫酸、硝酸 ) 、澄清石灰水 加入酸后,有无色、无味的气体

产生,该气体能使澄清石灰水变浑浊 CO32 - + 2H += CO2 ↑ + H2O

CO2 + Ca(OH)2 = CaCO3 ↓ + H2O

SO42 - BaCl2[ 或 Ba(NO3)2 溶液 ] 、稀 HNO3 生成白色沉淀,该沉淀不溶于稀

HNO3 Ba2 + + SO42 -= BaSO4 ↓

Cl - AgNO3 溶液、

稀 HNO3 生成白色沉淀,此沉淀不溶于稀 HNO3 Ag + + Cl -= AgCl ↓

Br - ① AgNO3 溶液、

稀 HNO3

②新制的氯水、四氯化碳 ①生成浅黄色沉淀,此沉淀不溶于稀 HNO3

②溶液由无色变为橙色,加 CCl4 振荡后, CCl4 层变为橙红色 ① Ag + + Br -=

AgBr ↓

② 2Br - + Cl2 = Br2 + 2C1 - I - ① AgNO3 溶液、

稀 HNO3

②新制的氯水、四氯化碳

③新制的氯水、淀粉溶液 ①生成黄色沉淀,此沉淀不溶于稀 HNO3

②溶液由无色变为黄色,加 CCl4 振荡后, CCl4 层显紫红色

③溶液显蓝色 ① Ag + + I -= AgI ↓

② 2I - + Cl2 = I2 + 2C1 -

③ 2I - + Cl2 = I2 + 2C1 -

NO3 - 被检物的浓溶液 ( 或晶体 ) + H2SO4( 浓 ) +Cu 并共热 有红棕色气体产生

Cu + 4H + + 2NO3 -= Cu2 +

+ 2NO2 ↑ + 2H2O

SO32 - 稀盐酸或稀硫酸 放出无色有刺激性气味、能使品红试液褪色的气体

SO32 - + 2H += SO2 ↑ + H2O