当前位置: 首页 » 中职教育 » 中职文化课 » 浙江省单独考试招生文化考试数学考试大纲

浙江省单独考试招生文化考试数学考试大纲

 

一、考试形式及试卷结构

(一)考试方法和时间

考试方法为闭卷、笔试。

试卷满分为150分,考试时间为120分钟。

(二)试卷内容比例

代数                                  约45%

三角                                  约20%

立体几何                              约10%

平面解析几何                          约25%

(三)题型比例

选择题(四选一型的单项选择题)        约30%

填空题                                约20%

解答题(含简答题、计算题和应用题)    约50%

(四)试题难易比例

容易题                                约60%

中等题                                约30%

较难题                                约10%

 

二、考试内容和要求

高等职业学校招生数学考试旨在测试中学数学基础知识、基本方法、基本技能、运算能力、逻辑思维能力、空间想像能力,以及运用所学数学知识和方法,分析问题和解决问题的能力。

本大纲对所列知识提出三个不同层次的要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求。三个层次分别为:

了解:对学过知识能进行复述和辨认,对所列知识的含义有感性和初步理性的认识,知道有关内容,并能进行直接运用。

理解:对所列知识的含义有理性的认识,能在了解知识基本内容的基础上作相应的解释、举例或变形、推断,并能运用知识解决简单的数学问题。

掌握:对所列知识在理解基础上能综合运用,并会解决一些数学问题和简单的实际问题。

【代数】

(一)集合

1.了解集合的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及表示方法,了解符号、的含义,并能运用这些符号表示集合与集合、元素与集合的关系,会求一个非空集合的子集,掌握集合的交、并、补运算。

2.理解充分条件、必要条件、充分必要条件的意义。

(二)不等式

1.理解实数大小的基本性质,能运用性质比较两个实数或两个代数式的大小。

2.理解不等式的三条基本性质,理解均值定理,会用不等式的基本性质和基本不等式a2≥0(aR),a2+b2≥2ab(a,bR),  解决一些简单的问题。

3.会解一元一次不等式,一元一次不等式组和可化为一元一次不等式组的不等式;会解一元二次不等式,了解区间的概念。会在数轴上表示不等式或不等式组的解集。

4.了解绝对值不等式的性质,会解形如|ax+b|≥c和|ax+b|≤c的绝对值不等式。

(三)函数

1.理解函数概念,会求一些常见函数的定义域,会求简单函数的值域,会作一些简单函数的图象。

2.理解函数的单调性的概念,了解增函数、减函数的图象特征。

3.理解一元二次函数的概念,掌握它们的图象与性质,了解一元二次函数、一元二次方程、一元二次不等式之间的关系,会求一元二次函数的解析式及最大、最小值。

4.了解指数、对数的概念,会用幂的运算法则和对数的运算法则进行计算,了解常用对数和自然对数的概念。

5.了解指数函数、对数函数的概念、图象与性质,会用它们解决有关问题。

6.了解数学建模,能根据实际建立一次函数、二次函数、分段函数模型,并解决相关问题。

(四)平面向量

1.了解平面向量及有关概念。

2.会对平面向量进行加、减和数乘的运算。

(五)数列

1.了解数列及其有关概念。

2.理解等差数列、等差中项的概念,掌握等差数列的通项公式、前n项和公式。

3.理解等比数列、等比中项的概念,掌握等比数列的通项公式、前n项和公式。

  1. 会运用数列知识建立模型解决有关问题。

(六)排列、组合与二项式定理

1.理解加法原理和乘法原理。

2.理解排列、组合的意义,掌握排列数、组合数的计算公式,理解组合数的两个性质,能运用排列、组合的知识解决一些简单的应用问题。

3.掌握二项式定理、二项式展开式的通项公式,会解决简单问题。

(七)概率

理解概率的概念,会解决简单古典概型问题。

【三角】

(一)三角函数及其有关概念

1.了解正角、负角、零角的概念,理解象限角和终边相同的角的概念。

2.理解弧度的概念,会进行弧度与角度的换算。

3.理解任意角的三角函数的概念,记住三角函数在各象限的符号和特殊角的三角函数值。

(二)三角函数式的变换

1.掌握同角三角函数两个基本关系式、诱导公式,会运用它们进行运算、化简。

2.会根据已知三角函数值求角(0~2π内特殊角)。

3.掌握两角和、两角差、二倍角的正弦、余弦、正切公式,会用它们进行运算、化简。

(三)三角函数的图象和性质

1.掌握正弦函数的图象和性质,会用正弦函数的性质(定义域、值域、周期性和单调性)解决有关问题。

2.了解函数的图象、性质,会求函数的周期、最大值和最小值。

(四)解三角形

掌握正弦定理、余弦定理,会用它们解斜三角形及简单应用题,会根据三角形两边及其夹角求三角形的面积。

【立体几何】

(一)直线和平面

1.理解平面的基本性质。

2.了解空间两条直线、直线与平面、两个平面的位置关系。

3.了解两条异面直线所成的角,理解直线和平面所成的角、二面角及二面角的平面角的概念。

4.了解点到平面的距离,点和斜线在平面内的射影,直线与平面的距离,两平面间的距离等概念。

5.理解直线与平面垂直的概念。

6.会用直线与平面、两个平面平行与垂直的判定定理和性质定理解决有关问题。

(二)多面体和旋转体

了解直棱柱、正棱柱、正棱锥、圆柱、圆锥、球的概念和性质,会用它们的性质以及表面积、体积公式进行有关计算。

【平面解析几何】

(一)直线

1.掌握中点公式和两点间的距离公式,并应用这两个公式解决有关问题。

2.理解直线的倾斜角和斜率的概念,会求直线的倾斜角和斜率。

3.会根据有关条件求直线的方程。

4.掌握两条直线的位置关系及点到直线的距离公式,能运用它们解决有关问题。

(二)圆锥曲线

1.了解曲线与方程的关系,会求两条曲线的交点,会根据给定条件求一些常见曲线的方程。

2.掌握圆的标准方程、一般方程。理解直线与圆的位置关系,能运用它们解决有关问题。

3.理解椭圆、双曲线、抛物线的概念,掌握它们的标准方程和性质,并能运用它们解决有关问题。